termodinamikai egyensúlyi állandó és a reakcióhányados thermodynamic equilibrium constant and the reaction quotient	A reakció-szabadentalpia definíció egyenletébe $\Delta_{\rm r}G = \left(\frac{\partial G}{\partial \xi}\right)_{p,T} = \sum_{j} \nu_{j} \mu_{j}$ behelyettesítve a kémiai potenciál általános definíció egyenletét ($\mu_{j} = \mu_{j}^{\theta} + RT \ln a_{j}$) azt kapjuk, hogy $\Delta_{\rm r}G = \Delta_{\rm r}G^{\theta} + RT \ln Q$ ahol $\Delta_{\rm r}G^{\theta} = \sum_{j} \nu_{j} \mu_{j}^{\theta}$ a standard reakció-szabadentalpia, Q pedig az ún. reakcióhányados:
	$Q = \prod_{j} a_{j}^{\nu_{j}}.$
	A II operator lancszorzast jelol. A K _a termodinamikai egyensúlyi állandó a Q reakcióhányados az egyensúlyi aktivitásokkal (\bar{a}_j) kiszámolva:
	$K_a = \left(\prod_j \bar{a}_j^{\nu_j}\right)_{eq}$
	Az egyensúlyi állandó értéke nem függ a kiindulási aktivitásoktól (koncentrációktól), adott hőmérsékleten és nyomáson a vizsgált reakcióra jellemző, dimenzió nélküli <i>termodinamikai</i> állandó.
elektrolit	Az <i>elektrolit</i> kifejezést többszörös értelemben használjuk:
electrolyte	 Egyrészt olyan anyagot jelent, amelyet feloldva az elektromosságot ionosan vezető oldatot kapunk. Ennek ellentéte a <i>nemelektrolit</i>. Másrészt elektrolitnak nevezünk minden olyan közeget, amely az elektromosságot ionosan vezeti (pl. az ionvegyületek oldata vagy olvadéka). Harmadrészt pedig elektrolitnak nevezzük azt a közeget is, amely a galvánelemek elektródjában szerepel.
	Poláros oldószerben az ionvegyületek pozitív töltésű <i>kationokra</i> és negatív töltésű <i>anionokra</i> disszociálnak. Az elektrolitok híg oldatai a jól ismert kolligatív sajátságokat (forráspont-emelkedés, fagyáspontcsökkenés, ozmózis) mutatják, melyek alapján a disszociáció mértéke meghatározható.
	Az elektrolitok osztályba sorolhatók a <i>moláris fajlagos vezetés</i> (Λ_m) koncentrációfüggése alapján.
erős elektrolit strong electrolyte	<i>Erős elektrolitok</i> nak nevezzük azokat az anyagokat, amelyek oldataikban teljesen disszociálnak. Ilyenek az ionkristályos vegyületek (többnyire sók), az erős savak és erős bázisok.
gyenge elektrolit	Gyenge elektrolitoknak nevezzük azokat az anyagokat, amelyek oldataikban csak részlegesen disszociálnak. Ilyenek a gyenge savak és

weak electrolyte	gyenge bázisok. A gyenge elektrolitok híg oldatában a koncentráció (c) csökkentésével a disszociáció foka ($0 \le \alpha \le 1$) meredeken növekszik ($c \rightarrow 0$ esetén $\alpha \rightarrow 1$).
Ostwald-féle hígítási törvény Ostwald's dilution law	A gyenge elektrolitok disszociációs egyensúlyi állandója (K_d) az elektrolitkoncentrációval (c) és a disszociáció fokkal (α) kifejezve a következő egyenlettel adható meg: $K_d = \frac{\alpha^2 c}{1 - \alpha}$ Ezt az összefüggést linearizálva kapjuk: $\frac{1}{\alpha} = 1 + \frac{\alpha c}{K_d}$ Az Ostwald-féle hígítási törvényhez úgy jutunk el, hogy a fenti egyenletben a disszociációfokot a moláris fajlagos vezetés (Λ_m) és a végtelen híg oldatra vonatkozó érték (Λ_m^o) viszonyaként fejezzük ki: $\alpha = \frac{\Lambda_m}{\Lambda_m^o}$. A higítási törvény így kapott egyenlete: $1 \qquad 1 \qquad \Lambda_m c$
ionok kánződási függyányai ás	$\overline{\Lambda_{\rm m}} = \overline{\Lambda_{\rm m}^{\rm o}} + \frac{1}{K_{\rm d}(\Lambda_{\rm m}^{\rm o})^2}$
meghatározásuk	alkalmazzuk, mint a semleges részecskékre vonatkozó függvényeket.
enthalpy, free energy and entropy of formation for ions and their determination	Mivel csak kationokat vagy anionokat tartalmazó oldatokat nem lehet előállítani, megegyezés szerint a hidrogénion vizes oldatbeli képződésére:
	$0.5H_2(g) \rightarrow H^+(aq)$
	a következő standardértékeket definiáljuk minden hőmérsékleten:
	 standard képződési entalpia: \$\Delta_f H^\theta(H^+, aq) = 0\$, standard képződési szabadentalpia: \$\Delta_f G^\theta(H^+, aq) = 0\$.
	Az oldatban lévő ionok entrópiáját olyan skálán adjuk meg, amelyen a vízben lévő hidrogénion entrópiáját önkényesen nullának vesszük:
	$\Delta S^{\theta}(\mathrm{H}^+, aq) = 0$, minden hőmérsékleten.
	Az ionok képződési függvényei kísérletileg a termokémia standard módszereivel határozhatók meg ill. számíthatók az ún. Born–Haber- körfolyamat alkalmazásával.
aktivitás, aktivitási együttható, közepes ionaktivitási együttható	Az <i>ionaktivitást</i> ugyanúgy definiáljuk, mint a semleges részecskék aktivitását:
activity, activity coefficient, mean activity coefficient	$a_j = \gamma_j \frac{m_j}{m^{\Theta}}$
	ahol a_j a j-edik ionféleség aktivitása, 0 < $\gamma_j \leq 1$ az ionaktivitási
	együtthatója, m _i pedig a molalitása (az 1 kg oldószerben oldott anyag

	móljainak száma). A standard molalitás értéke m^{Θ} = 1,0 mol kg $^{ ext{-1}}.$
	Az M _p X _q általános képlettel leírható elektrolitok vizes oldatára az egyedi ionaktivitási együtthatók helyett az ún. <i>közepes ionaktivitási</i> együtthatót alkalmazzuk:
	$\gamma_{\pm} = \sqrt[s]{\gamma_{\rm M}^{\rm p} \gamma_{\rm X}^{\rm q}}, {\rm s} = {\rm p} + {\rm q}.$
	Ennek bevezetését az indokolja, hogy az ionok egyedi hozzájárulása az ideálistól való eltéréshez kísérletileg nem határozható meg, s így γ_+ és γ értéke külön-külön nem határozható meg.
Debye-Hückel-formula a közepes ionaktivitási együttható kiszámítására Debye-Hückel limiting law to	A közepes ionaktivitási együttható értékének kiszámítására a Debye–Hückel-formulát (határtörvényt) alkalmazzuk: $\log \gamma_{\pm} = -A z_+ z \sqrt{I/I^{\Theta}}$
calculate the activity coefficient	ahol $A = 0,509$ (vizes oldatban és 298,15 K-en), z_+ , z az elektrolitot alkotó ionok töltésszáma, I az ún. <i>ionerősség</i> , melynek standard értéke $I^{\Theta} = 1,0 \text{ mol kg}^{-1}$. Ha az oldat ionerőssége nagy ($m > 0,01 \text{ mol kg}^{-1}$), akkor a közepes ionaktivitási együttható értékét az ún. <i>kiterjesztett</i> <i>Debye–Hückel-törvény</i> szerint számoljuk:
	$\lg \gamma_{\pm} = \frac{-A z_{\pm}z_{-} \sqrt{I/I^{\Theta}}}{1+B\sqrt{I/I^{\Theta}}}$
	ahol <i>B</i> változtatható paraméter.
ionerősség és számítása ionic strength and its calculation	Az <i>ionerősség</i> az ionok közötti elektrosztatikus kölcsönhatás erősségének jellemzésére bevezetett termodinamikai mennyiség:
	$I = \frac{1}{2} \sum_{j} m_{j} z_{j}^{z} \pmod{\text{kg}^{2}}$
	Az ionerősség standard értéke I^{Θ} = 1,0 mol kg ⁻¹ .
Oldhatóság, oldhatósági szorzat solubility, solubility product	Az oldhatóság (oldékonyság) egy adott anyag telített oldatának koncentrációja adott oldószerben, adott hőmérsékleten és nyomáson. Értékét a gyakorlati életben rendszerint molaritásban (mol dm ⁻³), a termodinamikai összefüggésekben pedig inkább molalitás (mol kg ⁻¹) mértékegységben szokás megadni.
	Az M _p X _q általános képlettel leírható, rosszul oldódó só oldódási egyensúlya vizes közegben, teljes disszociációt feltételezve, a következő egyenlettel írható le:
	$M_p X_q(s) \rightleftharpoons p M^{q+}(aq) + q X^{p-}(aq)$
	Az <i>olhatósági szorzat</i> a heterogén egyensúlyra felírható K _s egyensúlyi állandó:
	$K_{\rm s} = a(\mathrm{M}^{\rm q+})^{\rm p} a(\mathrm{X}^{\rm p-})^{\rm q}$

	1 : 1 elektrolit esetén az oldhatósági egyensúly:
	$MX(s) \rightleftharpoons M^+(aq) + X^-(aq)$
	s így az oldhatósági szorzat
	$K_{\rm s} = a({\rm M}^+)a({\rm X}^-) = \frac{m({\rm M}^+)m({\rm X}^-)}{(m^\theta)^2}\gamma_{\pm}^2 = \frac{S^2}{(m^\theta)^2}\gamma_{\pm}^2$
	ahol S az elektrolit oldhatósága (mol kg ⁻¹).
	2 : 1 elektrolit esetén az oldhatósági egyensúly:
	$M_2X(s) \rightleftharpoons 2M^+(aq) + X^-(aq)$
	s így az oldhatósági szorzat
	$K_{\rm s} = a({\rm M}^+)^2 a({\rm X}^-) = \frac{m({\rm M}^+)^2 m({\rm X}^-)}{(m^\theta)^2} \gamma_{\pm}^2 = \frac{4S^3}{(m^\theta)^3} \gamma_{\pm}^3$
	ahol S az elektrolit oldhatósága (mol kg ⁻¹).
galvánelem galvanic cell	A galvánelem (másképpen elektrokémiai cella) olyan berendezés, amelyben kémiai energiát alakítunk át elektromos energiává. Ebben – általában – két fémesen vezető elektród van, melyek ionosan vezető elektrolitba merülnek. A két elektród merülhet ugyanabba az elektrolitba is, de ha az elektrolitok különbözőek, akkor a két elektródteret (a félcellákat) ionos vezetést biztosító áramkulccsal (pl. sóhíddal) kell összekötni. Tágabb értelemben szokás az elektród és az
	elektrollt egyutteset, az elektrodteret is elektrodnak nevezni. A galvánelemben – általában – elektronátmenettel járó redoxireakciók játszódnak le térben elkülönítve a két félcellában. <i>A katódon redukció</i> (elektronfelvétel), <i>az anódon</i> pedig <i>oxidáció</i> (elektronleadás) történik. Az elektromos munkát a két elektródot összekötő külső fémes vezetőben elmozduló elektronok végzik.
koncentrációs galvánelem concentration cell	A <i>koncentrációs galvánelemek</i> olyan elektrokémiai cellák, amelyekben a két félcella (elektród+elektrolit) azonos felépítésű, de az elektrolit vagy az elektródfém koncentrációi eltérőek, illetve gázelektródok esetén eltérő a gáznyomás a két félcellában.
gyakorlatban használt	A gyakorlatban használt galvánelemek típusai:
galvånelemek	• primer elemek (nem tölthető elemek) – például: Daniell-elem,
galvanic cells in use	Leclanché-elem (savas-, nedves-, száraz- és lúgoselem), Weston-
	 fele normalelem, higanyoxid-gombelem, ezűstoxid-gombelem szekunder elemek (újratölthető elemek/akkumulátorok) –például: ólomakkumulátor, Edison-féle Ni/Cd (Ni/Fe) lúgos akkumulátor, Ni-MH akkumulátor, Li-ion akkumulátor
	• tüzelőanyag-elemek –például: Grove- vagy Bacon-elem (hidrogén-

	oxigén), direkt metanolos membráncella (Oláh György).
cellapotenciál és meghatározása	A galváncella cellapotenciálja (E) a jobb- (j) és baloldali (b) félcellák elektródpotenciáljának (ε_j és ε_b) különbsége:
cell potential and its determination	$E = \varepsilon_{\rm j} - \varepsilon_{\rm b} = E^{\theta} - \frac{RT}{zF} \ln Q$
	ahol E^{θ} a standard cellapotenciál (V), R az egyetemes gázállandó, T a hőmérséklet (K), z a redoxi folyamatban résztvevő elektronok száma. $F = N_{\rm A}e$, a Faraday állandó (96485 C/mol), ahol $N_{\rm A}$ az Avogadro- állandó, e az elemi töltés. Q a cellareakció reakcióhányadosa.
	A standard cellapotenciál (V) a két standard állapotú félcella standard elektródpotenciáljának különbsége:
	$E^{ heta} = oldsymbol{arsigma}_{ ext{j}}^{ heta} - oldsymbol{arsigma}_{ ext{b}}^{ heta}$
	A standard állapot $p^{\Theta} = 10^5$ Pa standard nyomást és $a^{\Theta} = 1$ mol/kg standard aktivitást jelent minden potenciál-meghatározó részecskefajtára.
	A <i>cellapotenciált</i> mérhetjük terhelésmentesen, áramtermelés nélkül (ezt nevezzük elektromotoros erőnek, <i>e.m.e</i> .), vagy terheléssel, azaz áram termelése közben (ezt nevezzük kapocsfeszültségnek).
	Az <i>e.m.e.</i> mérése technikailag megoldható az ún. kompenzációs módszerrel (teljesen árammentes módszer) vagy nagyon nagy belső ellenállású (R > $10^{10} \Omega$) feszültségmérővel (gyakorlatilag árammentes módszer). A kapocsfeszültséget egyszerű voltmérővel is mérhetjük.
cellapotenciál és cellareakció reakció-szabadentalpia kancsolata	A cellapotenciál (E) és a cellareakció reakció-szabadentalpiája ($\Delta_r G$) közötti kapcsolat általános esetben:
connection between cell	$\Delta_{\mathbf{r}}G = -zFE$
potential and Gibbs free	amely azt fejezi ki, hogy a kemiai reakcio energiaja elektromos munkává alakul. Standard állapotban:
energy	$\Delta_{\rm r}G^{\theta} = -zFE^{\theta}$
cellapotenciál és cellareakció egyensúlyi állandójának kapcsolata	A standard cellapotenciál (E^{θ}) és a cellareakció egyensúlyi állandójának (K) kapcsolata a termodinamika egyik alapegyenletéből $\Delta_r G^{\theta} = -RT \ln K$
connection between cell	és a standard cellapotenciál definíciójából:
potential and equilibrium constant	$\Delta_{\mathbf{r}}G^{\theta} = -zFE^{\theta}$
	vezethető le:
	$E^{\Theta} = \frac{RT \ln K}{E}$
	ZF
	÷.

	$\ln K = \frac{zFE^{\theta}}{RT}.$
elektród és fajtái types of electrodes	Az elektrokémiai cella alkotórészeit, a katódteret és az anódteret, amelyekben a félcellareakciók (a redukció és az oxidáció) játszódnak le, gyakran egyszerűen csak <i>elektródnak</i> nevezzük. Az így értelmezett elektródok alaptípusai:
	Elsőfajú elektród:
	Az elektród felépítése: $M(s) M^{z+}(aq)$,
	ahol M(s) a fémet, a függőleges vonal pedig a fém és az M ^{z+} (aq) kationt tartalmazó elektrolit közötti határréteget jelöli.
	Az elektródreakció redukciós irányban: $M^{z^+}(aq) + ze^- \rightarrow M(s)$
	Az elektródpotenciál (V) képlete:
	$\varepsilon(\mathbf{M}^{z+}/\mathbf{M}) = \varepsilon^{\theta}(\mathbf{M}^{z+}/\mathbf{M}) + \frac{RT}{zF} \ln a_{M^{z+}}$
	Másodfajú elektród:
	Az elektródfelépítése: M(s) MX(s) X ⁻ (aq)
	ahol M(s) a fémet, az első függőleges vonal a fém és a rosszul oldódó, MX(s) összetételű sója közötti határréteget, a második függőleges vonal pedig a rosszul oldódó só és az X ⁻ (aq) aniont tartalmazó elektrolit közötti határréteget jelöli.
	Az elektródreakció redukciós irányban: $MX(s) + e^- \rightarrow M(s) + X(aq)$
	Az elektródpotenciál (V) képlete:
	$\varepsilon(MX/M, X^{-}) = \varepsilon^{\Theta}(MX/M, X^{-}) - \frac{RT}{F} \ln a_{X^{-}}$
	A fenti képletből megállapítható, hogy egy másodfajú elektród potenciálja állandó, ha az anion aktivitását (koncentrációját) egy inert sója alkalmazásával állandó értéken (pl. 1 mol dm ⁻³) tartjuk. Elterjedten alkalmazzák az inert só adott hőmérsékleten telített oldatát is.
	Egyéb elektródtípusok:
	Gázelektródok (pl. hidrogénelektród), redoxielektródok, membránelektródok (pl. üvegmebrán-elektród), fémkomplexelektród, enzimelektródok, ionszelektív-elektródok, amalgám- és ötvözetelektródok.
standard hidrogénelektród standard hydrogen electrode	Az elektródpotenciálok értékeit az ún. <i>standard hidrogénelektródhoz</i> (SHE) képest definiáljuk és mérjük, melynek elektródpotenciálját valamennyi hőmérsékleten – önkényesen – nullának vesszük.
	A hidrogénelektród felépítése: $Pt(s) H_2(g) H^+(aq)$
	ahol Pt(s) indifferens platinaelektródot jelöl. A platinakorommal bevont Pt-drót- vagy -lemezelektródot hidrogénionok vizes oldatába

	merítjük, és az oldaton keresztül tiszta hidrogéngázt buborékoltatunk át. A függőleges vonalak a fázishatárokat jelölik.
	A hidrogénelektródban lejátszódó reakció redukciós irányban:
	$\mathrm{H}^{+}(aq) + \mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H}_{2}(g).$
	Az elektródpotenciál (V) képlete:
	$\mathcal{E}(\mathrm{H}^+/\mathrm{H}_2) = \frac{RT}{F} \ln \frac{a(\mathrm{H}^+)(p^{\Theta})^{1/2}}{f(\mathrm{H}_2)^{1/2}}.$
	Mivel standard körülmények között $f(H_2) = p \ominus = 10^5$ Pa és $a(H^+) = 1$ mol kg ⁻¹ , így $\mathcal{E}^{\ominus}(H^+/H_2) = 0$ valamennyi hőmérsékleten.
	A hidrogénelektród alkalmas a pH mérésére is, hiszen $f(H_2) = p^{\ominus}$ esetén
	$\mathcal{E}(\mathrm{H}^+/\mathrm{H}_2) = \frac{RT}{F} \ln a(\mathrm{H}^+) = -\frac{2,303RT}{F} \mathrm{pH} = -59,16 \mathrm{mV} \times \mathrm{pH}$
üvegelektród glass electrode	A gyakorlatban a pH-mérésére <i>üvegelektródokat</i> alkalmazunk. Régi megfigyelés, hogy bizonyos üvegféleségek alkálifémionjai hidrogénionokra cserélhetők, és ezzel a hidrogénion-tartalmú elektrolitok és az üveg között jól definiált potenciálkülönbség alakul ki. A membránpotenciált meghatározó egyensúlyi folyamat a következő:
	$\mathrm{H}^{+}(ads) \rightleftharpoons \mathrm{H}^{+}(aq)$
	ahol $H^+(ads)$ a duzzadt üvegfelületi rétegben adszorbeált hidrogéniont, $H^+(aq)$ pedig az oldatban lévő akvatált hidrogéniont jelöli. Ismeretes, hogy a hidrogénion aktivitása a duzzadt üvegfelületi rétegekben gyakorlatilag állandó marad függetlenül az érintkező oldatok pH-jától igen széles tartományban.
	Az üveglektród ε elektródpotenciálja (V) a membrán két oldalán (a belső oldal egy pufferrel érintkezik, a külső pedig a mérendő oldattal) kialakuló membránpotenciálok összege, amelyről megmutatható, hogy egyenes arányos a mérendő oldat pH-jával:
	$\varepsilon = \text{konstans} - \frac{KT}{F} \ln a_{H^+} = \text{konstans} + 0,059 \times \text{pH}$
elektródpotenciál definíciója, koncentrációfüggése és mérése definition, concentration	A fémesen vezető sajátosságú <i>elektród</i> és a vele érintkező, ionosan vezető <i>elektrolit</i> közötti határfelület legegyszerűbb modellje szerint <i>elektromos kettősréteg</i> alakul ki akkor, amikor a semleges oldatból fémionok válnak ki, az oldatban pedig negatív töltésű anionok
definition, concentration dependence and measurement of an electrode potential	maradnak vissza, vagy ezzel ellentétesen, a fémből fémionok mennek az oldatba és a fémben pedig elektronok maradnak vissza. Első közelítésben ezen elektromos kettősréteg potenciálját tekinthetjük az <i>elektródpotenciálnak</i> . Más megfogalmazás szerint az elektródpotenciál egy konstanstól eltekintve az ún. <i>Galvani-feszültség</i> , amely a fém belseje és az oldat belseje közötti potenciálkülönbség.
	Az elektródpotenciál koncentrációfüggésére általánosan érvényes

	összefüggés nem adható meg, mert az elektród típusától függően más- más egyenlet alkalmazandó. Azonban, az egyenletekből egyértelműen kiolvasható, hogy 25°C-on a Q reakcióhányados egy nagyságrenddel (10-es alapon) történő megváltoztatása $2,303RT/zF = 0,059/z$ volttal növeli vagy csökkenti az elektródpotenciál értékét. A gyakorlatban egy elektród elektródpotenciálját valamilyen ismert (állandó) elektródpotenciálú referenciaelektróddal összeállított galvánelem terhelésmentesen mért cellapotenciáljából (<i>e.m.e.</i>) számítjuk ki (a diffúziós potenciált kiküszöböljük vagy elhanyagoljuk). A vonatkoztatási elektród általában másodfajú elektród (például telített Ag/AgCl-elektród, telített kalomel-elektród stb.).
cella és az elektród Nernst- egyenlete	A galváncella Nernst-egyenlete:
Nernst equation of a cell and	$E = E^{\theta} - \frac{RT}{zF} \ln Q$
an electrode	ahol E a <i>cellapotenciál</i> , E^{θ} a standard cellapotenciál (V), R az egyetemes gázállandó, T a hőmérséklet (K), z a redoxifolyamatban résztvevő elektronok száma, F a Faraday-állandó (96485 C/mol), Q pedig a reakcióhányados.
	Egy elektród (félcella) Nernst-egyenlete:
	$\varepsilon_j = \varepsilon_j^{\theta} - \frac{RT}{zF} \ln Q_j$
	ahol ε_j az elektródpotenciál, ε_j^{θ} a standard elektródpotenciál (V), Q_j pedig a vizsgált elektródban lejátszódó félcellareakcióra vonatkozó reakcióhányados.
redoxielektród,	Redoxielektród:
redoxipotenciál definíciója és mérése	Az elektródfelépítése: Pt(s) Ox(aq), Red(aq)
redox electrode, definition and measurement of redox	ahol Pt(s) az indifferens platinaelektródot, Ox(aq) és Red(aq) egy ion vizes oldatbeli redukált és oxidált formáját, a függőleges vonal pedig a fém és az elektrolit közötti fázishatárt jelöli.
potential	Az elektródreakció redukciós irányban:
	$Ox(aq) + ze^- \rightarrow Red(aq)$
	Az elektródpotenciál (vagy másképpen redoxipotenciál) (V) képlete:
	$\varepsilon(\text{Ox/Red}) = \varepsilon^{\Theta}(\text{Ox/Red}) + \frac{RT}{zF} \ln \frac{a_{\text{Ox}}}{a_{\text{Red}}}$
	A standard redoxipotenciál értékét is a standard hidrogénelektródhoz képest adjuk meg. A pozitív standard redoxipotenciál azt jelenti, hogy a fémion oxidált formája a standard hidrogénelektródban lévő hidrogént hidrogénionná oxidálja, miközben ő maga redukálódik, a negatív standard redoxipotenciál pedig azt jelenti, hogy a fémion redukált

	formája a standard hidrogénelektródban lévő hidrogéniont hidrogénné redukálja, miközben ő maga oxidálódik. Hasonló elvi alapon állították fel a fémionok/fémek <i>elektrokémiai sorát</i> is.
	A gyakorlatban a redoxipotenciál (és a standard redoxipotenciál) értékét ismert elektródpotenciálú referenciaelektróddal összeállított galvánelem terhelésmentesen mért cellapotenciáljából (<i>e.m.e.</i>) számíthatjuk ki (a diffúziós potenciált kiküszöböljük vagy elhanyagoljuk). A vonatkoztatási elektród általában egy állandó elektródpotenciálú másodfajú elektród (például telített Ag/AgCl- elektród, telített kalomel-elektród stb.).
diffúziós potenciál kialakulása és kiküszöbölése	Ha egy galvánelemben két különböző (vagy különböző koncentrációjú) elektrolit érintkezik, akkor a két elektrolit határfelületén ún. <i>diffúziós</i>
diffusion potential and its elimination	potenciál alakul ki, mely kb. 1-2 mV hozzájárulást jelent a cellapotenciál értékéhez. Az érintkezés helyén a mozgékonyabb ionok a hígabb oldatba diffundálnak, míg a kevésbé mozgékony ellenionok lemaradnak, s így töltésszeparáció, azaz potenciálkülönbség jön létre. Ezt nevezzük diffúziós potenciálnak.
	A diffúziós potenciál kiküszöbölése sóhíddal történhet, amely telített KCI- vagy KNO ₃ -oldatot tartalmaz agar-agar gélben. Így a diffúziós potenciál a sóhíd mindkét oldalán közel azonos és független lesz az elektródtérben lévő híg elektrolitoldatok koncentrációjától. Mivel a kálium-, a klorid- és a nitrátionok mozgékonysága közel azonos, a kicsiny diffúziós potenciál gyakorlatilag elhanyagolhatóvá válik.
transzpotfolyamatok: diffúzió, hővezetés, viszkozitás	Azokat a folyamatot, melyek során anyag, energia vagy valamilyen más mennyiség egyik helyről a másik helyre jut, <i>transzportfolyamatok</i> nak
transport properties: diffusion, thermal conduction, viscosity	nevezzük. Az áramlás sebességét a fluxussal (áramsűrűséggel) jellemzük, ami az egységnyi keresztmetszeten, arra merőlegesen, egységnyi idő alatt áthaladó egységnyi fizikai mennyiség mértéke.
	A <i>diffúzió</i> sebessége, az anyagáramsűrűség a következő egyenlettel adható meg:
	$J_z = -D \frac{\mathrm{d}\mathcal{N}}{\mathrm{d}z}$
	ahol J_z a <i>z</i> irányú anyagáramlás fluxusa (m ⁻² s ⁻¹), \mathcal{N} a részecskeszám- sűrűség (m ⁻³), <i>D</i> pedig a diffúziós együttható (m ² s ⁻¹).
	A <i>hővezetés</i> re, a hő formájában történő energiaterjedésre, a következő transzportegyenlet érvényes:
	$J_z = -\kappa rac{\mathrm{d}T}{\mathrm{d}z}$
	ahol J_z az energiaáramlás z irányú fluxusa (J m ⁻² s ⁻¹), T a hőmérséklet (K), κ pedig a hővezetési együttható (J K ⁻¹ m ⁻¹ s ⁻¹), melynek számértéke megadja a fluxus értékét egységnyi hőmérsékletgradiens esetén.
	Az egyenlet jobb oldalán szereplő negatív előjel azt fejezi ki, hogy a hőáramlás – önként – a magasabb hőmérsékletű helyről az

	alacsonyabb hőmérsékletű hely felé történik, adiabatikus rendszerben a hőmérsékletek kiegyenlítődéséig.
	A viszkozitás az egymással érintkező folyadékrétegek lamináris áramlásával kapcsolatos fogalom. A folyás Newton-féle modellje szerint a lassabban áramló rétegek visszatartó hatást fejtenek ki a gyorsabban áramlókra, s ezt áramlási viszkozitásnak nevezzük. Mivel az effektust az határozza meg, hogy hogyan kerül át például az x irányú impulzus (lendület) a szomszédos rétegekbe (például a z irányban), az áramlási viszkozitás az x irányú impulzus z irányú fluxusától függ. Az impulzus fluxusára vonatkozó transzportegyenlet:
	$J_z = -\eta \frac{\mathrm{d}v_x}{\mathrm{d}z}$
	ahol J_z az x irányú impulzus z irányú fluxusa (kg m ⁻¹ s ⁻²), v_x a kiszemelt folyadékréteg x irányú áramlási sebessége (m/s), η pedig a viszkozitási együttható (1 kg m ⁻¹ s ⁻¹ = 1 Pa s = 10 P (Poise)), melynek számértéke megadja a fluxus értékét egységnyi sebességgradiens esetén.
Fick I. törvénye, diffúziós együttható	<i>Fick I. törvénye</i> kimondja, hogy az anyagáramlás fluxusa (J), a diffúzió hatására egységnyi felületen, arra merőlegesen, egységnyi idő alatt
Fick's first law of diffusion, diffusion coefficient	áthaladt anyagmennyiség (mol m ⁻² s ⁻¹), egyenesen arányos a koncentrációgradienssel. Egydimenziós (pl. <i>x</i> irányú) anyagáramlás esetén a következő egyenlet érvényes:
	$J_{x} = -D\left(\frac{\partial c}{\partial x}\right)_{t}$
	ahol J_x az x irányú diffúziós anyagáramsűrűség, D a diffúziós együttható (m² s ⁻¹), $(\partial c / \partial x)_t$ pedig a koncentráció x irányú gradiense.
	Az egyenlet jobb oldalán szereplő negatív előjel azt fejezi ki, hogy az anyagáramlás – önként – a nagyobb koncentrációjú (nagyobb kémiai potenciálú) helyről a kisebb koncentrációjú (kisebb kémiai potenciálú) hely felé történik, zárt rendszerben a koncentrációk (kémiai potenciálok) kiegyenlítődéséig.
	A diffúziós együttható jelentése: számértéke megadja az anyagáram- sűrűség értékét egységnyi koncentrációgradiens esetén.
Fick II. törvénye, diffúzióegyenlet Fick's second law of diffusion, diffusion equation	<i>Fick II. törvénye, az ún. diffúzióegyenlet</i> lehetővé teszi, hogy kiszámítsuk a diffúzió hatására adott helyen, adott idő alatt bekövetkező koncentrációváltozást. Egydimenziós (pl. <i>x</i> irányú) anyagáramlás esetén a következő egyenlet érvényes:
	$\left(\frac{\partial c}{\partial t}\right)_{x} = D\left(\frac{\partial^{2} c}{\partial x^{2}}\right)_{t}$
	amely kimondja, hogy adott helyen és időpillanatban a koncentrációváltozás sebessége, $(\partial c/\partial t)_x$, arányos a $c(x,t)$ függvény ugyanezen helyhez és időpillanathoz tartozó távolság szerinti második

	parciális deriváltjával. Az arányossági tényező a diffúziós együttható.
	A diffúzióegyenlet megoldásához meg kell adni a koncentráció kezdeti helyfüggésére vonatkozó ún. kezdeti feltételeket és a vizsgált térbeli tartomány peremén érvényes ún. peremfeltételeket.
ionok mozgékonysága ion mobility	Az elektromos erőtérben elmozduló ionok az oldószer közegellenállása miatt (a gyorsító és fékező erők kiegyenlítődését követően) állandó s sebességgel (cm s ⁻¹) vándorolnak:
	s = uE
	ahol E az elektromos térerősség (V/cm), u pedig az ionmozgékonyság (cm ² s ⁻¹ V ⁻¹). Ez utóbbi tulajdonképpen a vándorlási sebesség értékét adja meg egységnyi elektromos térerősség (1 V/cm) esetén. Ez teszi lehetővé az ionok vezetőképességi tulajdonságainak összehasonlítását.
	A gömb alakú részecske folyadékban történő mozgására vonatkozó Stokes-egyenlet szerint a közegellenállási (fékező) erő:
	$F_{\rm s} = fs = (6\pi\eta a)s$
	ahol a a vizsgált ion ún. hidrodinamikai sugara, η pedig a közeg viszkozitása. Egy z töltéssel rendelkező részecskére ható gyorsító erő:
	$F_e = zeE$
	ahol $e = \frac{F}{N_A} = 1,602177 \times 10^{-19}$ C az elemi töltés. A két erő
	egyenlőségét feltételezve az ionmozgékonyság a következő képlettel számítható:
	$u = \frac{ze}{6\pi\eta a}$
	Az <i>Einstein-összefüggés</i> szerint az ionok oldatbeli <i>D</i> diffúziós együtthatója és <i>u</i> mozgékonysága között a következő egyenlet teremt kapcsolatot:
	$D = \frac{uRT}{zF}.$
vezetés, fajlagos vezetés, moláris fajlagos vezetés	Egy oldat <i>G vezetése</i> (mértékegysége Siemens, melynek jele S) az oldat <i>R</i> ellenállásának (Ω) reciproka (1 S = 1 Ω^{-1}):
conductance, conductivity, molar conductivity	$G = \frac{1}{R} = \frac{\kappa}{C^*}$
	ahol κ a <i>fajlagos vezetés</i> (S cm ⁻¹), amely az egységnyi keresztmetszetű és egységnyi élhosszúságú oldatrészlet (kocka) vezetése, $C^* = l/A$ (cm ⁻¹) pedig a vezetőképességi cella geometriai méreteitől (l a hosszúság, A pedig a keresztmetszet) függő <i>edényállandó</i> vagy <i>cellakonstans</i> . C^* értékének meghatározása kalibrálással, azaz ismert κ^* fajlagos vezetésű elektrolit G^* vezetésének mérésével történik: κ^*
	$C^* = \frac{1}{G^*}$ Mivel az elektrolitoldat vezetése függ a benne lévő ionok számától, a

	vezetési tulajdonságok összehasonlíthatósága érdekében bevezették a moláris fajlagos vezetést, melyet a következő egyenlet definiál:
	$\Lambda_{\rm m} = \frac{1000 (\rm cm^3/\rm dm^3) \kappa}{\rm c}$
	ahol <i>c</i> az elektrolit moláris koncentrációja (mol dm ⁻³). A fenti egyenlet szerint számított moláris fajlagos vezetés mértékegysége S cm ² mol ⁻¹ .
	Az erős elektrolitok moláris fajlagos vezetése a Kohlrausch-szabály szabály szerint a koncentráció négyzetgyökével arányosan csökken:
	$\Lambda_{\rm m} = \Lambda_{\rm m}^{\rm o} - \mathcal{K} c^{1/2},$
	ahol Λ^o_m a végtelen híg elektrolitoldatok moláris fajlagos vezetése, a ${\cal K}$ pedig olyan állandó, amely sokkal inkább az elektrolit összetételétől (pl. MX vagy MX ₂), mintsem annak anyagi minőségétől függ.
	A gyenge elektrolitok oldatában a moláris fajlagos vezetés meredeken nő a koncentráció csökkentésével, amelyet az Ostwald-féle hígítási törvény ír le:
	$\frac{1}{\Lambda_{\rm m}} = \frac{1}{\Lambda_{\rm m}^{\rm o}} + \frac{\Lambda_{\rm m}c}{K_{\rm d}(\Lambda_{\rm m}^{\rm o})^2}$
	ahol $K_{\rm d}$ a gyenge elektrolitok disszociációs egyensúlyi állandója, c pedig a koncentrációja (mol dm ⁻³).
Kohlrausch-törvény: az ionok független vándorlása	<i>Kohlrausch</i> kimutatta, hogy végtelen híg elektrolitoldatok moláris fajlagos vezetése ($\Lambda_{ m m}^{ m o}$) kifejezhető az elektrolitot alkotó ionok végtelen
law of the independent migration of ions	híg oldatbeli moláris fajlagos vezetésének (λ^{o}_{+} és λ^{o}_{-}) sztöchiometriai számok (ν_{+} és ν_{-}) szerint súlyozott összegével:
	$\Lambda^{\rm o}_{\rm m} = \nu_+ \lambda^{\rm o}_+ + \nu \lambda^{\rm o} . \label{eq:gamma_matrix}$
	Kísérleti tapasztalat az is, hogy λ_{+}^{0} ill. λ_{-}^{0} értéke csak az adott ionra jellemző, független az elektrolit többi ionjától. Mivel eszerint végtelen híg oldatban az ionok nincsenek egymásra hatással, a Kohlrausch által megfogalmazott fenti összefüggést az <i>ionok független vándorlása</i> törvényének nevezzük.
	Egy ion végtelen híg oldatbeli egyedi moláris fajlagos vezetése (λ_i^o) és ionmozgékonysága (u_i^o) közötti kapcsolat:
	$\lambda_i^{\mathrm{o}}=z_iu_i^{\mathrm{o}}F$,
	ahol z _i az ion töltésszáma.
átviteli szám és mérése transport number and its	Az átviteli szám megadja, hogy az i -edik oldatbeli ion által szállított $q_{ m i}$ töltés hányadrésze az oldaton áthaladó teljes q töltésnek:
measurement	$t_i = \frac{q_i}{q} = \frac{I_i}{I}$,
	ahol $I_{\rm i}$ és I a megfelelő áramerősségek.

	Az összes átviteli szám összege:
	$\sum_{i} t_{i} = \sum_{i} \frac{q_{i}}{q} = \frac{\sum_{i} q_{i}}{q} = \frac{q}{q} = 1.$
	A töltések szállítása az ionok mozgékonyságával van szoros kapcsolatban, így a végtelen híg oldatbeli t ^o átviteli számot kifejezhetjük (számíthatjuk) az ionmozgékonyságok ill. a végtelen híg oldatbeli moláris fajlagos vezetés segítségével is:
	$t_j^{\rm o} = \frac{z_j v_j u_j^{\rm o}}{\sum_i z_i v_i u_i^{\rm o}} = \frac{v_j \lambda_j^{\rm o}}{\sum_i v_i \lambda_i^{\rm o}} = \frac{v_j \lambda_j^{\rm o}}{\Lambda_{\rm m}^{\rm o}}$
	Megjegyzendő, hogy t_j^0 értéke – a λ_j^0 mennyiségtől eltérően – mindig függ az oldatban jelen lévő többi iontól is. Kísérletileg az átviteli számot a mozgó határfelületek módszerével vagy a Hittorf-módszerrel határozhatjuk meg.
reakciósebesség definíciója, mértékegysége	<u>Állandó térfogatú rendszerben</u> a <i>reakciósebesség</i> (v) a reakció- koordináta (ξ) időegység alatt bekövetkező változása térfogategységre
definition and unit of reaction rate	$v = \frac{1}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t}$
	ahol V a térfogat, t pedig az idő. Figyelembe véve a reakciókoordináta változására (d ξ) vonatkozó, korábban (lásd kémiai egyensúly) bevezetett definícióegyenletet
	$\mathrm{d}\xi=\mathrm{d}n_j/v_j$
	ahol d n_j a <i>j</i> -edik anyagféleség mólszámváltozása, és v_j pedig a sztöchiometriai együtthatója az adott reakcióban ($v_j > 0$ a termékekre, és $v_j < 0$ a reaktánsokra), a reakciósebesség egyszerűbben is megadható a a reakcióban résztvevő <i>j</i> -edik anyagféleség koncentrációjának változási sebességével (d[J]/dt),
	$v = \frac{1}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t} = \frac{1}{v_j} \frac{1}{V} \frac{\mathrm{d}n_j}{\mathrm{d}t} = \frac{1}{v_j} \frac{\mathrm{d}[J]}{\mathrm{d}t}$
	Az így definiált reakciósebesség mértékegysége mol dm ⁻³ s ⁻¹ .
	<u>Nem állandó térfogatú rendszerben</u> a <i>j</i> -edik anyagféleségre vonatkozó <i>reakciósebességet</i> (<i>v_j</i>) egyszerűbb a mólszámváltozás sebességével definiálni:
	$v_j = \frac{\mathrm{d}n_j}{\mathrm{d}t},$
	ahol n_j a j-edik anyagféleség mólszáma az adott időpillanatban.
	Az így definiált reakciósebesség mértékegysége mol s ⁻¹ .

sebességi együttható rate coefficient	A sebességi együttható a kinetikai tömeghatástörvény (ez egy történeti elnevezés) szerint felírt vagy gyakran kísérletesen meghatározott reakciósebességi egyenletben $v = k \prod c_i^{\alpha_j}$
	$\mathbf{I}_{j}\mathbf{I}^{-j}$ a c_{j} koncentrációk megfelelő hatványon vett szorzata és a rakciósebesség (v) közötti k arányossági tényező. Az α_{j} hatványkitevő a j-edik anyagfajta ún. kinetikai részrendűsége. A Π operátor láncszorzást jelöl. A sebességi együttható értéke időben állandó, nem változik a koncentrációkkal, de változhat a hőmérséklettel, a nyomással, a közeg permittivitásával és az ionerősséggel. Értéke megadja a reakciósebesség számértékét egységnyi koncentrációkat feltételezve.
	A sebességi együttható mértékegysége a reakció bruttó kinetikai rendűségétől függ.
kinetikai rendűség, rész- és bruttórendek példái	A bruttó kinetikai rendűség (α) a
reaction order, order of a reaction with respect to a given species, overall order	$v = k \prod_{j} c_{j}^{\alpha_{j}}$ reakciósebességi egyenletben szereplő α_{j} részrendűségek összege $(\alpha = \sum_{j} \alpha_{j})$. Az egyes anyagfajtákra vonatkozó részrendűség általában nem azonos a <i>j</i> -edik anyagfajta adott reakcióbeli sztöchiometriai együtthatójával. A részrendűség lehet pozitív és negatív ill. egész- és törtszám is. A bruttó kinetikai rendűség alapján beszélhetünk például kinetikailag nulladrendű elsőrendű másodrendű harmadrendű törtrendű sth
	reakciókról.
elsőrendű reakció sebességi egyenlete és integrálása	Az A \rightarrow P reakcióegyenlet szerint lejátszódó, kinetikailag elsőrendű reakció sebességi egyenlete:
first order kinetic equation and its integrated form	$v = -\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = k \ [\mathrm{A}],$
	ahol [A] a reaktáns koncentrációja adott időpillanatban. A kinetikai differenciálegyenlet megoldása (az integrálás) eredménye):
	$[\mathbf{A}] = [\mathbf{A}]_0 e^{-kt},$
	ahol $[A]_0$ a reaktáns kezdeti koncentrációja. Az egyenlet logaritmizált alakja:
	$\ln[A] = \ln[A]_0 - kt,$
	amely lehetővé teszi, hogy a sebességi együtthatót a kísérleti adatok ábrázolásából egy egyenes meredekségeként határozzuk meg.
elemi reakció	Az <i>elemi reakció</i> olyan reakciólépés, amely egyetlen molekuláris eseményként játszódik le pontosan a felírt reakcióegyenlet szerint.

elementary reaction	Érvényes rá a kinetikai tömeghatástörvény, s ebben az esetben a sebességi egyenletben szereplő részrendűségek megegyeznek a sztöchiometriai együtthatókkal.
molekularitás molecularity	A reakció <i>molekularitását</i> az elemi reakcióban résztvevő molekulák száma adja meg. Eszerint megkülönböztetünk unimolekuláris, bimolekuláris és trimolekuláris reakciókat. A molekularitás azonos a bruttó rendűséggel (pl. a bimolekuláris reakció egyben másodrendű is), de a fordított állítás nem feltétlenül igaz.
reakciómechanizmus reaction mechanism	A <i>reakciómechanizmus</i> a reakciót meghatározó elemi lépések listája, együttese, lehetőség szerint kiegészítve az elemi lépések sebességi együtthatóját és ezek hőmérséklet- és nyomásfüggését tartalmazó táblázattal.
sebességmeghatározó lépés rate determining step	A sebességmeghatározó lépés az a leglassúbb reakciólépés, amely megszabja a bruttó reakció sebességét, és sebességi együtthatójának kis növelése jelentősen megnöveli a végtermék képződési sebességét.
felezési idő és képlete nullad-, első- és másodrendű reakció esetén half-life and its calculation for zero-, first- and second-order reactions	A <i>felezési idő</i> az az időtartam, amely alatt egy anyagféleség (az alábbi példákban A) kezdeti koncentrációja a felére csökken. A felezési idő • nulladrendű reakció esetén: $t_{1/2} = \frac{[A]_0}{2k}$, • az A \rightarrow P elsőrendű reakció esetén: $t_{1/2} = \frac{\ln 2}{k}$, • a 2A \rightarrow P másodrendű reakció esetén: $t_{1/2} = \frac{1}{2k[A]_0}$.
párhuzamos reakciók	A következő reakcióséma szerint lejátszódó reakciókat
parallel reactions	$\mathbf{A} \stackrel{k_1}{\rightarrow} \mathbf{P}_1,$
	$A \xrightarrow{k_2} P_2$,
	:
	$A \xrightarrow{k_N} P_N$,
	<i>párhuzamos (vagy paralell) reakcióknak</i> nevezzük. Ekkor az A reaktáns fogyásának kinetikai differenciálegyenlete a következő:
	$-\frac{d[A]}{dt} = (k_1 + k_2 + \dots + k_N) [A],$
	ahol k_i az elsőrendű kinetika szerint lejátszódó <i>i</i> -edik részreakció sebességi együtthatója. A P ₁ , P ₂ ,P _N termékek koncentrációinak arányát bármely időpillanatban a sebességi együtthatók viszonya szabja meg, feltéve, hogy kezdeti koncentrációjuk nulla volt.
sorozatos reakciók consecutive reactions	Az A $\xrightarrow{k_a}$ B $\xrightarrow{k_b}$ C reakcióséma szerint lejátszódó reakciókat <i>sorozatos</i> (vagy <i>konszekutív</i>) <i>reakcióknak</i> nevezzük. A koncentrációk időbeli változását leíró egyenletek a következők: [A] = [A]_0 e^{-k_a t}

	$[B] = \frac{k_{a}(e^{-k_{a}t} - e^{-k_{b}t})}{k_{a} - k_{b}} [A]_{0}$
	$[C] = \left\{ 1 + \frac{k_{a}e^{-k_{b}t} - k_{b}e^{-k_{a}t}}{k_{b} - k_{a}} \right\} [A]_{0},$
	feltéve, hogy – amint szokásos – B és C kezdetben nincs jelen a rendszerben. A köztitermék (B) koncentrációjának maximuma a k_a és k_b sebességi együtthatók viszonyától függ. Ha $k_a \gg k_b$, akkor B felhalmozódik, mielőtt termékké alakulna, míg ha $k_a \ll k_b$, akkor a köztitermék koncentrációja a reakció nagy részében elhanyagolhatóan kicsi marad.
láncreakciók, láncrobbanás chain reactions, chain- branching explosions	A láncreakciókban nagy reaktivitású köztitermékek, láncvivők keletkeznek, amelyek a végtermék képződése közben képesek reagálni a kiindulási anyaggal, de eközben maguk is újraképződnek. A láncreakciók tipikus részlépései: láncindítás, láncterjedés és lánclezárás. Az olyan láncelágazási lépés, amelyben egyszerre több láncvivő képződik, láncrobbanáshoz (a láncvivők számának robbanásszerű növekedéséhez) vezethet. Tipikus példája a durranógáz reakció. Bizonyos láncreakciókban előforduló ún. inhibíciós reakciókban ugyanannyi láncvivő keletkezik, mint amennyi elfogy; eközben a végtermékek is fogynak, s így csökken a bruttó reakció sebessége.
enzimkinetika és értelmezése: Michaelis-Menten- mechanizmus enzyme-catalysed reactions and their interpretation: the Michaelis-Menten mechanism	Az <i>enzimek</i> nagy molekulatömegű, fehérjéket tartalmazó molekulák, amelyek már kis koncentrációban is hatékonyan és specifikusan gyorsítják (katalizálják) egy-egy reaktáns molekula (szubsztrát) átalakulását. A kísérleti tapasztalatok szerint sok enzimkatalizált reakció sebessége lineárisan nő az enzim koncentrációjának növelésével, de jellegzetes telítési görbe szerint változik a szubsztrát koncentrációjának növelésével.
	A Michaelis–Menten-mechanizmus szerint az enzimkatalizált reakciókban a következő reakciólépések kapnak szerepet:
	$E + S \xrightarrow{k_a} ES$
	$\mathrm{ES} \stackrel{k'_{\mathrm{a}}}{\to} \mathrm{E} + \mathrm{S}$
	$ES \xrightarrow{\kappa_{b}} E + P$
	következő egyenlettel adható meg:
	$v = \frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d}t} = \frac{k_{\mathrm{b}}[\mathrm{S}][\mathrm{E}]_{\mathrm{0}}}{K_{\mathrm{M}} + [\mathrm{S}]},$
	ahol $[E]_0$ az enzim kezdeti koncentrációja, K_M pedig az ún. Michaelis-állandó:
	$K_{\rm M} = \frac{k_{\rm b} + k_{\rm a}'}{k_{\rm a}}.$

	A sebességi egyenlet magyarázatot ad mindkét kísérleti megfigyelésre. Így az enzimkatalizált reakció maximális sebessége a következőképpen számítható:
	$v_{\max} = k_{b}[E]_{0},$
	a Michaelis-állandó pedig megadja azt a szubsztrát koncentrációt, amelynél az enzimkatalizált reakció sebessége éppen fele a maximális sebességnek.
steady-state közelítés steady-state approximation	$\begin{aligned} Steady-state közelítés (vagy másként kvázistacionárius közelítés): A vizsgált reakciómechanizmusban szereplő bizonyos köztitermékek koncentrációváltozásának sebességét nullának vesszük. Ekkor a kiválasztott köztitermékekre vonatkozó kinetikai differenciálegyenletek algebrai egyenletrendszert eredményeznek, amelyek megoldása megadja a köztitermékek steady-state (állandósult, kvázistacionárius) koncentrációinak értékét a többi anyagféleség koncentrációjának függvényében. A maradék differenciálegyenleteket és az algebrai egyenletrendszert együttesen megoldva az eredeti kinetikai differenciálegyenlet-rendszer megoldásához nagyon közeli megoldást kapunk. A módszert kiterjedten alkalmazzuk a kinetikai vizsgálatok egyszerűsítésére minden olyan esetben, amikor nagyon reaktív köztitermékek képződnek, például láncreakciókban, polimerizációs reakciókban stb. Az A \stackrel{k_a}{\to} B \stackrel{k_b}{\to} C reakcióséma szerint lejátszódó sorozatos reakcióban a B reaktív köztitermék képződési sebességére steady-state (kvázistacionárius) közelítést alkalmazhatunk, ha k_a \ll k_b, és írhatjuk, hogy \frac{d[B]}{dt} = k_a[A] - k_b[B] = 0, amiből B állandósult koncentrációia egyszerűen számítható. $
előegyensúlyi közelítés pre-equilibrium	Ha egy gyors előegyensúlyi reakcióban résztvevő anyagféleségeket sokkal lassúbb reakciók fogyasztják, akkor ezen anyagféleségek időfüggő koncentrációja is jó közelítéssel számítható az egyensúlyi állandónak megfelelő kifejezéssel, mivel az egyensúly az anyagféleségek fogyását követve gyorsan eltolódik a megfelelő irányba. A többi reakció termékeinek képződési sebességére felírt kinetikai differenciálegyenletekben az előegyensúly feltételezésével számított időfüggő koncentrációkat használjuk fel. Ha az $A + B \rightleftharpoons I \rightarrow P$ reakcióséma szerint lejátszódó reakcióban az első lépés egy gyors előegyensúly (egyensúlyi állandója <i>K</i>), amelyet egy lassú, sebességmeghatározó lépés követ (sebességi együtthatója <i>k</i>), a
	sebessége is) a következőképpen számítható:
	$\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d}t} = kK[\mathrm{A}][\mathrm{B}].$

Arrhenius-egyenlet, Arrhenius-paraméterek	Az Arrhenius-egyenlet a reakciósebességi együttható (k) hőmérsékletfüggését írja le (állandó térfogaton):
Arrhenius equation, Arrhenius	$k = Ae^{-rac{E_a}{RT}}$,
parameters	ahol A a preexponenciális tényező, $E_{\rm a}$ az aktiválási energia (J mol ⁻¹), R az egyetemes gázállandó, T pedig a termodinamikai hőmérséklet (K).
	Az Arrhenius-paraméterek (A és $E_{\rm a}$) értékei az egyenlet logaritmizált alakjából:
	$\ln k = \ln A - \frac{E_a}{RT},$
	a kísérleti pontokra illesztett egyenes tengelymetszetéből $(\ln A)$ és
	meredekségéből $\left(-\frac{\mu_a}{R}\right)$ számíthatók. A logaritmikus formulából levezethetjük az aktiválási energia (a reakció lejátszódásához szükséges energiatöbblet) általánosabb definícióját is:
	$E_{\rm a} = RT^2 \left(\frac{\partial \ln k}{\partial T}\right)_V$
	vagy másképpen:
	$E_{\rm a} = -R \left(\frac{\partial \ln k}{\partial (1/T)} \right)_V.$
sztérikus faktor, ütközési hatáskeresztmetszet	Az ütközési elmélet szerint egy bimolekuláris reakció k_2 sebességi együtthatója a következő egyenlettel számolható:
steric factor, reaction cross section	$k_2 = \sigma P \left(\frac{8kT}{\pi\mu}\right)^{1/2} N_{\rm A} e^{-\frac{E_a}{RT}},$
	ahol σ az <i>ütközési hatáskeresztmetszet, P</i> a <i>sztérikus faktor, k</i> a Boltzmann-állandó, <i>T</i> a termodinamikai hőmérséklet (K), μ az ún. redukált tömeg, $N_{\rm A}$ az Avogadro-állandó, $E_{\rm a}$ az aktiválási energia, <i>R</i> pedig az egyetemes gázállandó.
	Az $R_{\rm A}$ és $R_{\rm B}$ sugarú, nem deformálható gömbök esetén <i>az ütközési hatáskeresztmetszet</i> (σ) az ún. <i>ütközési csatorna</i> keresztmetszete:
	$\sigma = \pi (R_{\rm A} + R_{\rm B})^2.$
	A μ redukált tömeg a két részecske tömegéből ($m_{ m A}$ és $m_{ m B}$) számítható:
	$\frac{1}{\mu} = \frac{1}{m_{\rm A}} + \frac{1}{m_{\rm B}}.$
	A <i>P</i> sztérikus faktor értéke általában kisebb mint 1. Az ütközési hatáskeresztmetszet és a sztérikus faktor szorzatát ($\sigma^* = \sigma P$) reaktív hatáskeresztmetszetnek nevezzük.
átmeneti állapot, átmeneti komplex	A kémiai reakciók modern elmélete szerint, amikor az A és B reaktánsok egy bimolekuláris elemi reakcióban megközelítik egymást,
transition state, activated	a potenciális energia egy maximum értékhez tartva fokozatosan növekszik. Azt az atomegyüttest és elrendeződését, ami a

complex	maximumhoz közeli helyen valósul meg, átmeneti (aktivált) komplexnek, a potenciális energia maximumán megvalósuló elrendeződést pedig a reakció átmeneti állapotának nevezzük. A molekulák ebből az állapotból még visszatérhetnek a kiindulási állapotba, de ha ezen az elrendeződésen áthaladnak (valamilyen kis mértékű hatásra), akkor bekövetkezik a termékké alakulás.
Eyring-egyenlet	Az átmeneti (aktivált) komplex elmélete szerint az
Eyring equation	$A + B \xrightarrow{k_2} P$
	bimolekuláris gázreakció a következő reakcióséma szerint játszódik le:
	$A + B \rightleftharpoons C^{\ddagger} \to P,$
	amelyben a C [‡] átmeneti (aktivált) komplex egy gyors előegyensúlyi reakcióban képződik, majd egy lassú, unimolekuláris reakcióban alakul át P termékké. Mivel a sebességmeghatározó lépés ez utóbbi reakció, a
	$v = \frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d}t} = k_2[\mathrm{A}][\mathrm{B}]$
	bruttó reakciósebességi egyenletben szereplő bimolekuláris sebességi együttható:
	$k_2 = k^{\dagger} K^{\dagger},$
	ahol k^{\dagger} az unimolekuláris reakció sebességi együtthatója, K^{\dagger} pedig a gyors előegyensúlyi reakció egyensúlyi állandója.
	Az átmeneti (aktivált) komplex elmélete szerint:
	$k^{\ddagger} = \kappa \nu$,
	ahol κ az ún. transzmissziós tényező, ami sok esetben jó közelítéssel 1, ν pedig a reakciókoordináta mentén történő rezgés frekvenciája az átmeneti állapoton való áthaladás során (vagy másként a komplex széteséséhez, azaz a termék képződéséhez vezető kritikus regzés frekvenciája). Továbbá,
	$K^{\dagger} = \frac{kT}{h\nu}\overline{K},$
	ahol k a Boltzmann-állandó, T a termodinamikai hőmérséklet (K), h pedig a Planck-állandó. A képletben szereplő \overline{K} egy olyan egyensúlyi állandó jellegű mennyiség, amely a statisztikus termodinamika szerint az A, B és C [‡] részecskék ún. állapotösszege segítségével számolható ki a reaktánsok és az aktivált komplex molekuláris paraméterei alapján, de le van választva belőle a termékképződéshez vezető rezgés állapotösszege (kT/hv).
	Mindezek alapján az Eyring-egyenlet a következő:
	$k_2 = \kappa \frac{kT}{h} \overline{K}.$
aktiválási szabadentalpia, -	Az átmeneti (aktivált) komplex elmélet szerint a bimolekuláris

entalpia és -entrópia	gázreakcióra vonatkozóan
Gibbs energy of activation, enthalpy and entropy of	$\overline{K} = rac{RT}{p^{ heta}}\overline{K_p}$,
activation	ahol p^{θ} a standard nyomás, $\overline{K_p}$ pedig egy egyensúlyi állandó jellegű konstans, amiből a C [‡] egyik rezgési állapotának állapotösszegét elkülönítettük.
	Az aktiválási szabadentalpiát a kémiai egyensúlyra vonatkozó termodinamikai alapegyenlet alapján a következő módon definiálhatjuk:
	$\Delta G^{\pm} = -RT \ln \overline{K_p},$
	amiből a bimolekuláris gázreakció sebességi együtthatója:
	$k_2 = \kappa \frac{kT}{h} \times \frac{RT}{p^{\theta}} e^{-\frac{\Delta G^{\dagger}}{RT}}.$
	A szabadentalpia ismert termodinamikai definícióját alkalmazva az átmeneti (aktivált) komplex képződésére írhatjuk, hogy
	$\Delta G^{\pm} = \Delta H^{\pm} - T \Delta S^{\pm},$
	ahol ΔH^{\dagger} az aktiválási entalpia, ΔS^{\dagger} pedig az aktiválási entrópia. Így a sebességi együtthatóra vonatkozó kifejezés a következőképpen módosul:
	$k_2 = \kappa \frac{kT}{h} \times \frac{RT}{p^{\theta}} e^{\frac{\Delta S^{\dagger}}{R}} e^{-\frac{\Delta H^{\dagger}}{RT}} = B e^{\frac{\Delta S^{\dagger}}{R}} e^{-\frac{\Delta H^{\dagger}}{RT}},$
	ahol a B paraméter jelentése az egyenletből könnyen kiolvasható. Alkalmazva azt, hogy gázfázisú bimolekuláris reakciók esetén
	$\Delta H^{\ddagger} = E_{a} - 2RT,$
	а
	$k_2 = Ae^{-\frac{E_a}{RT}},$
	Arrhenius-egyenletben szereplő A konstans a következő lesz:
	$A = e^2 B e^{\frac{\Delta S^{\ddagger}}{R}}.$
	Eszerint az aktiválási entrópia a preexponenciális tényezőből bimolekuláris gázreakciók esetében könnyen kiszámítható:
	$\Delta S^{\ddagger} = R \left(\ln \frac{A}{B} - 2 \right).$
	Hasonló összefüggések vezethetők le a bimolekuláris oldatreakciókra és az oldat- és gázfázisban lejátszódó unimolekuláris reakciókra is. Felhasználva azt, hogy ezekben az esetekben
	$k_2 = \kappa \frac{kT}{h} \times e^{-\frac{\Delta G^{\dagger}}{RT}} = B' e^{\frac{\Delta S^{\dagger}}{R}} e^{-\frac{\Delta H^{\dagger}}{RT}},$
	$\Delta H^{\dagger} = E_{\rm a} - RT,$

	$A = eB'e^{\frac{\Delta S^{\dagger}}{R}},$
	s így
	$\Delta S^{\ddagger} = R \left(\ln \frac{A}{B'} - 1 \right).$
katalízis catalysis	A <i>katalízis</i> az jelenség, amikor a kémiai reakció katalizátor közreműködésével gyorsabban játszódik le. A <i>katalizátor</i> olyan anyagfajta, amely egy reakció sebességét új, kisebb aktiválási energiájú reakcióút megnyitásával növeli meg, de a reakció teljes lejátszódása után változatlan formában és mennyiségben megmarad illetve kinyerhető. A katalizátor a reakció egyensúlyi helyzetét nem változtatja meg, mivel egyformán gyorsítja mind az oda-, mind a visszafelé irányuló reakció sebességét.
homogén és heterogén katalízis homogeneous and heterogeneous catalyses	Ha a reaktánsok és a katalizátor azonos fázisban vannak, akkor homogén, ha különböző fázisban vannak, akkor heterogén katalízisről beszélünk. A heterogén katalitikus reakciók esetében a katalizátor tipikusan szilárd halmazállapotú, a reaktánsok pedig gáz- vagy oldatfázisban vannak.
autokatalízis autocatalysis	Autokatalízisnek nevezzük azt a jelenséget, amikor a termékek egyike gyorsítja azt a reakciót, amelyikben önmaga képződik. Az A + P \rightarrow 2P reakcióegyenlet szerint lejátszódó autokatalitikus reakció sebességi egyenlete a következő: $v = \frac{d[P]}{dt} = k[A][P],$ amely P koncentrációjának időbeli változására egy jellegzetes S-alakú görbét eredményez. Az autokatalitikus reakció a maximális sebességét az S-alakú görbe inflexiós pontjának megfelelő időpontban éri el.
bistabilitás bistability	Nyílt, egyensúlytól távoli rendszerben (például jól kevert, átáramlásos reaktorban) az autokatalitikus reakció ún. <i>bistabilitást</i> is eredményezhet. Ez azt jelenti, hogy a rendszer előéletétől függően ugyanazon paraméterekhez (tápáramsebesség, betáplálási koncentrációk, hőmérséklet stb.) kétféle, egy kisebb és egy nagyobb konverziójú, időtől független állapot is tartozhat. A két stacionárius állapot közötti átmenet a rendszer alkalmas megzavarásával (perturbációjával) valósítható meg. A bistabilis rendszerek bifurkációs diagramja (pl. egy köztitermék időben állandósult koncentrációjának ábrázolása egy alkalmasan megválasztott bifurkációs paraméter függvényében) jellegzetes <i>hiszterézis</i> hurkot mutat.
oszcilláció oscillation	Az oszcilláció a köztitermékek koncentrációjának periodikus, időben ismétlődő változását jelenti. Kialakulásának feltétele az, hogy a reakciórendszer az egyensúlytól távol legyen, és legyenek benne egymással versengő pozitív és negatív visszacsatolási reakciók (pl. autokatalízis és inhibíció). Zárt izoterm rendszerben az oszcillációk

	száma mindig véges, mert a rendszer előbb-utóbb eléri az egyensúlyi állapotot (a folyamat végén természetesen már csak monoton változással). Nyílt rendszerben az oszcillációs viselkedés állandósulhat, amelyet a köztitermékek koncentrációjának <i>fázisterében</i> egy zárt görbével, rendszerint ún. <i>határciklussal</i> írhatunk le.
foton hatásai: gerjesztés, ionizáció, kötéshasítás photochemical processes: excitation, photo-ionization, photolysis	A részecske-hullám természetű fény <i>fotonokból áll</i> , melyek energiája az $E = hv$ egyenlettel adható meg, ahol h a Planck-állandó, v pedig az elektromágneses hullám rezgési frekvenciája. A fotonok elnyelésével az atomok ill. molekulák külső atom- ill. molekulapályáján lévő elektronok <i>gerjesztődnek</i> , azaz nagyobb energiájú pályákra kerülnek. Az energiatöbblet megszűnhet fizikai folyamatokban (pl. egyszerű hőleadás, fluoreszcencia vagy foszforeszcencia stb.), kémiai reakciókban (ionizáció, homolitikus vagy heterolitikus kötéshasítás, kioltás stb.) vagy a kettő kombinációjában (kemilumineszcencia).
fotokémia alaptörvényei basic laws of photochemistry	 A fotokémia alaptörvényei: Grotthus-Draper-törvény: csak az a fény okoz kémiai változást, amelyet a rendszer elnyel. Ha a fény teljesen visszaverődik, vagy a közeg transzparens az adott hullámhosszúságú elektromágneses rezgésre, akkor nincs kémiai változás. Bunsen-Roscoe-törvény: a fotokémiai hatás (H) arányos a besugárzó fény intenzitásával (I) és a besugárzási idő (t) szorzatával: H = I × t. Einstein-Stark-törvény: egy foton elnyelése egy primer fotokémia folyamatot eredményez, amit sok szekunder reakció követhet. A lézerekkel ma már többelektronos folyamatokat is meg tudunk valósítani. A primer folyamat lehet valamilyen gerjesztés vagy fotodisszociáció.
kvantumhasznosítási tényező quantum yield	A primer kvantumhasznosítási tényező (Φ) azt fejezi ki, hogy egy foton elnyelődése egy reaktánsmolekulából hány meghatározott, elsődleges termék (új molekula, atom vagy ion) képződéséhez vezet. A kvantumhasznosítási tényező függ az alkalmazott fény hullámhosszától. Értéke általában kisebb, mint 1, de láncreakciók esetén ennél jóval nagyobb is lehet.
sugárhatás-kémia radiation chemistry	A sugárhatás-kémia célja különböző nagy energiájú (pl. röntgen (X), α , β , γ , és neutron) sugárzások hatására bekövetkező kémiai változások tanulmányozása, hasznosítása és a káros hatások megelőzése. A keV- MeV energiatartományba eső sugárzások hatásai nem specifikusak, és elsősorban romboló jellegűek. A sugárzások lehetnek ionizáló ill. nem-ionizáló hatásúak, forrásuk lehet természetes eredetű (pl. kozmikus ill. terresztrikus radioaktív sugárzások) vagy mesterséges (pl. Röntgen-sugárzás). Az ionizáló sugárforrás erősségének mértékegysége az 1 becquerel (1 Bq = 1 bomlás perc ⁻¹), az elnyelt sugárdózis egysége az 1 gray (1 Gy = 1 J/1 kg elnyelő anyag), a biológiailag hatásos dózis egysége az 1 sievert (1 Sv =

	1 J/kg).
oldatreakciók: diffúziógátolt és energiagátolt reakciók	Az oldatban lejátszódó reakciók leírására a következő egyszerű kinetikai modellt alkalmazzuk:
reactions in solution:	$A + B \rightarrow AB$ $v = k_d[A][B]$
diffusion-controlled and	$AB \rightarrow A + B$ $v = k'_d[AB]$
activation-controlled reactions	$AB \rightarrow P$ $v = k_a[AB]$
	ahol AB a szolvátburokban képződő <i>ütközési komplex, k</i> _d a diffúzió- kontrollált bimolekuláris reakció sebességi együtthatója, <i>k</i> ' _d az ütközési komplex reaktánsokká történő visszaalakulásának sebességi együtthatója, <i>k</i> _a pedig az ütközési komplex termékké alakulásának elsőrendű sebességi együtthatója.
	Az AB ütközési komplex képződési sebességére steady-state (kvázistacionárius) közelítést alkalmazva, a reakció, azaz a termékképződés sebessége a következő egyenlettel adható meg:
	$v = \frac{d[P]}{dt} = k_2[A][B] = \frac{k_a k_d}{k_a + k'_d}[A][B].$
	Két határeset különböztethetünk meg:
	• Ha $k'_{\rm d} \ll k_{\rm a}$, akkor az eredő sebességi együttható $k_2 \approx k_{\rm d}$. Ekkor a reakciót diffúziógátolt reakciónak tekintjük, melynek sebességi együtthatója a következőképpen számítható (feltéve, hogy az A és B részecskék sugara azonos): $k_{\rm d} = \frac{8RT}{3\eta}$,
	anoi η a kozeg viszkozitása. • Ha $k_{-} \ll k'_{+}$ akkor az eredő sebességi együttható $k_{0} \approx k_{-}K_{-}$
	ahol $K = \frac{k_d}{k_a'}$ az első egyensúlyi lépés egyensúlyi állandója.
	Ekkor a reakciót energiagátoltnak tekintjük.
kinetikus sóhatás kinetic salt effect	Töltéssel rendelkező részecskék közötti bimolekuláris oldatreakció sebességi együtthatója (k_2) függ a sótartalmú oldat ionerősségétől (l). A Debye–Hückel-féle határtörvény alkalmazásával a következő egyenlet adódik:
	$\lg k_2 = \lg k_2^0 + 2Az_A z_B I^{1/2},$
	ahol k_2^0 az egységnyi aktivitásokhoz tartozó sebességi együttható, z_A és z_B az A és B ionok töltése (kationok esetén pozitív, anionok esetén negatív). A fenti egyenlet a <i>kinetikus sóhatás</i> kvantitatív kifejezése.
adszorpció, fiziszorpció, kemiszorpció adsorption, physisorption, chemisorption	Az adszorpció valamely anyag (adszorptívum) megkötődése egy másik anyag (adszorbens) felszínén. Ha a felületi megkötődés gyenge, másodlagos kötőerőkkel történik, akkor fiziszorpcióról beszélünk. Ha a felületi megkötődés során kémiai kötések keletkeznek a felület és az adszorptívum között, akkor kemiszorpcióról beszélünk. Ekkor a

	megkötött részecskék sokkal közelebb vannak a felülethez, mint fiziszorpció esetén.
relatív borítottság fractional coverage	A relatív borítottság ($0 \le \Theta \le 1$) az adszorptívum által elfoglalt adszorpciós (aktív) helyek száma osztva az összes aktív hely számával.
adszorpciós izoterma adsorption isotherm	Állandó hőmérsékleten a felületek borítottságának nyomással való változását <i>adszorpciós izotermáknak</i> nevezzük. A legegyszerűbb adszorpciós izoterma az ún. Langmuir-izoterma. A többrétegű adszorpció lehetőségét figyelembe vevő legáltalánosabb adszorpciós egyenlet a BET-izoterma.
Langmuir-izoterma Langmuir isotherm	A legegyszerűbb adszorpciós izoterma az ún. Langmuir-izoterma, amely egy gáz monomolekuláris rétegben történő adszorpciójának nyomásfüggését írja le akkor, ha a felület minden aktív helye egyenértékű és megkötő képessége független a szomszédos aktív helyek betöltöttségétől. A Langmuir-izoterma egyenlete: $\Theta = \frac{Kp}{1 + Kp'}$ ahol $K = k_a/k_d$ az adszorpciós-deszorpciós egyensúly egyensúlyi állandója, k_a az adszorpciós, k_d a deszorpciós folyamat sebességi együtthatója, p pedig a gáz nyomása.
BET-izoterma BET isotherm	A többrétegű adszorpció lehetőségét figyelembe vevő legáltalánosabb adszorpciós egyenlet a BET-izoterma: $\frac{V}{V_{\rm mon}} = \frac{cz}{(1-z)\{1-(1-c)z\}'}$ ahol $z = p/p^*$, p^* egy makroszkopikusan vastag adszorbeált folyadékréteg feletti gőznyomás, $V_{\rm mon}$ az egyrétegű teljes borítottságnak megfelelő térfogat, c pedig az adott rendszert jellemző állandó; értéke nagy, ha az egyszeres borítottságú felületről történő deszorpció $\Delta H_{\rm d}^{\Theta}$ entalpiája nagy az adszorbeált folyadék $\Delta H_{\rm vap}^{\Theta}$ párolgási entalpiájához képest. Konkrétan: $c = e^{(\Delta H_{\rm d}^{\Theta} - \Delta H_{\rm vap}^{\Theta})/RT}$.
Galvani-, Volta- és felületi potenciál Galvani potential, Volta potential, surface potential	Az elektródot képzeletben elválasztjuk a vele érintkezésben lévő elektrolittól, és mind a fém, mind az oldat töltését befagyasztjuk. Egy kiválasztott pozitív próbatöltést nagy távolságból az elektród felé közelítve az elektrosztatikus potenciál növekedését tapasztaljuk, amely azonban körülbelül 100 nm távolságban csaknem állandóvá válik. Ezt az értéket <i>Volta-potenciálnak</i> (ψ) nevezzük. A próbatöltést ezután a fémelektród belsejébe juttatva a potenciál ismételt növekedését tapasztaljuk, s ezt a potenciálváltozást <i>felületi potenciálnak</i> (χ) nevezzük. Az elektródfém belsejében lévő potenciált (a Volta- és

	felületi potenciálok összegét) Galvani-potenciálnak (Φ_{M}) nevezzük, ahol az M index a fém belsejére utal.
	Hasonló változások figyelhetők meg, ha a pozitív próbatöltést az elkülönített oldat felületéhez közelítjük, majd az oldat belseje felé haladva átvisszük rajta. A potenciál ebben az esetben is felveszi a <i>Volta-potenciál</i> értéket, amint a próbatöltés a töltött közegbe jut, majd a <i>Galvani-potenciál</i> értékét (Φ_s), amint a próbatöltés az oldat belsejébe kerül. Az S index az oldatra (solution) utal.
	Az elektródfém belsejére és az oldat belsejére jellemző Galvani- potenciálok különbségét Galvani-feszültségnek ($\Delta \Phi = \Phi_M - \Phi_S$) nevezzük. Egy konstanstól eltekintve ez az, amit hagyományosan elektródpotenciálnak (<i>E</i>) nevezünk. Az összes itt említett potenciál mértékegysége a volt (V).
elektrokémiai potenciál electric potential	Az <i>elektrokémiai potenciál</i> $(ar{\mu})$ egy ion kémiai potenciálja elektromos erőtérben:
	$\bar{\mu} = \mu + zF\Phi$,
	ahol μ az ion kémia potenciálja elektromos erőtér hiányában, F a Faraday-szám, $zF\Phi$ pedig az az elektromos munkavégzés, amely ahhoz szükséges, hogy 1 mól z töltésű iont Φ potenciálú helyre vigyünk.
	Ha a részecske semleges ($z = 0$), akkor az elektrokémiai potenciál azonos a kémia potenciállal. Ha az ion kation ($z > 0$) és $\Phi > 0$, akkor az elektrokémiai potenciál nagyobb, mint a kémiai potenciál, mert az ion egy energetikailag kedvezőtlen térben van. Ezzel szemben, ha $\Phi < 0$, akkor a kation elektrokémiai potenciálja kisebb, mint kémiai potenciálja, mert az ion egy energetikailag kedvező térben van. Értelemszerűen, hasonló megállapítások tehetők az anionokra is.
elektrolizáló cella electrolytic cell	Az elektrolizáló cella elvi felépítése nagyon hasonló a galváncelláéhoz: ez is két félcellából, anódból és katódból áll. A különbség az, hogy az elektrolizáló cellában egy külső áramforrásból nyert elektromos energiával oxidációs-redukciós folyamatokat valósítunk meg. Az elektrolizáló cellában lejátszódó folyamatot <i>elektrolízisnek</i> nevezzük.
	Az elektrolizáló cellában az <i>anódfém</i> a <i>pozitív pólus</i> , ahol a negatív anionok válnak le, és az oxidáció (elektronleadás) során az anódfém elektront vesz fel. A <i>katódfém</i> a <i>negatív</i> pólus, ahol a pozitív kationok válnak le, és a redukció (elektronfelvétel) során a katódfém elektront ad le. Az áramforrást tartalmazó külső áramkörben az elektronok az anódfémtől az áramforrás pozitív pólusa felé, ill. az áramforrás negatív pólusától a katódfém felé vándorolnak.
elektrolízis Faraday-féle törvényei Faraday laws of electrolysis	I. törvény: Az elektrolízis során az elektródokon képződő anyag tömege (<i>m</i>) arányos az áthaladó elektromos töltésmennyiséggel (<i>Q</i>). m = kQ,

	ahol a k arányossági tényező az ún. elektrokémiai egyenértéksúly.
	II. törvény: Adott elektromos töltésmennyiséggel elektrolizált anyag mennyisége arányos az anyag kémiai egyenértéksúlyával (M/z) , ahol M az adott anyag molekula- vagy atomtömege, z pedig a töltése. Más szavakkal: azonos töltésmennyiség különböző elektrolitokból kémiailag egyenértékű anyagmennyiséget választ ki.
	A két törvény egyesítéséből következik, hogy a kémiai egyenértéksúlyok viszonya megegyezik az elektrokémia egyenértéksúlyok viszonyával:
	$\frac{M_1/z_1}{M_2/z_2} = \frac{k_1}{k_2},$
	ahol az 1 és 2 index különböző anyagféleséget jelöli.
polarizáció polarization	A <i>polarizáció</i> azt jelenti, hogy az elektrolízis vagy a galvánelem működésének hatására megváltozik az oldat (elektrolit) összetétele az elektródokkal kapcsolatban lévő rétegben.
csereáramsűrűség exchange current density	Amikor az elektródokon nem folyik eredő áram (például a galvánelemet egy külső feszültségforrással éppen kiegyensúlyozzuk), az elektrokémiai cella egyensúlyban van. Ilyenkor a $j_c < 0$ katódos és $j_a > 0$ anódos áramsűrűségek ellentétes előjellel azonosak:
	$j_{a} = j_{c} = j_{0}$
	és értékük az ún. csereáram-sűrűség, melynek jele j_0 (mA/cm 2).
túlfeszültség, Butler-Volmer- egyenlet overnotential Butler-Volmer	Ha a cella áramot termel, akkor az elektródok potenciálja ún. működési értéket vesz fel. A túlfeszültség (η) a működési potenciál ($E_{működési}$) és a nyugalmi potenciál (E) különbsége:
equation	$\eta = E_{ m m ilde{u}k ilde{o}d ilde{e}si} - E.$
	A túlfeszültség hatására kialakuló eredő áramsűrűség (j) a Butler–Volmer-egyenlettel számítható:
	$j = j_0 \left\{ e^{(1-lpha_c)f\eta} - e^{-lpha_{cf\eta}} ight\}$,
	ahol $f=F/RT$, és $0\leq lpha_{ m c}\leq 1$ a katódos folyamathoz rendelhető ún. átlépési tényező.
bomlásfeszültség	A gyakorlatban fontos a cella azon minimális elektromos potenciálkülönbségének az ismerete, amelynél nagyobb feszültségnél már a kívánt cellareakció játszódik le. Ezt a minimális feszültséget gyakran <i>bomlásfeszültségnek</i> nevezik. A bomlásfeszültség értelemszerűen a két elektród azon potenciálkülönbségéből adódik, amely az áram megindulásakor mérhető. Az egyes elektródok potenciáljait ekkor <i>leválási potenciáloknak</i> nevezik.
Tafel-egyenletek	A <i>Tafel-egyenletek</i> a katódos ill. anódos áramsűrűség értékének
Tafel plot	valtozasat irjak le nagy tulfeszültseg alkalmazásakor ($ \eta \ge 0.12$ V).
	ina a tuneszuriseg (bonnasieszuriseg) nagy és pozitiv égy elektrouon

	(anódos áram), akkor:
	$\ln j_{\rm a} = \ln j_0 + (1 - \alpha_{\rm c}) f \eta .$
	Ha a túlfeszültség (bomlásfeszültség) nagy negatív érték (katódos áram), akkor:
	$\ln(-j_c) = \ln j_0 - \alpha_c f \eta .$
	Ezek az egyenletek tulajdonképpen a Butler–Volmer-egyenlet határesetei. A Tafel-egyenleteknek megfelelő grafikus kiértékeléssel (Tafel-ábrázolás) az egyenes meredekségéből az átlépési tényezőt, tengelymetszetéből pedig a csereáram-sűrűséget lehet meghatározni.
diffúziós határáram-sűrűség limiting current density	A túlfeszültség növelésével kialakuló határáram-sűrűség az ún. <i>diffúziós határáram-sűrűség</i> , melynek jele <i>j</i> _L . Ekkor az elektródokon lejátszódó töltésátviteli folyamatok sebességét a töltéssel rendelkező részecskéknek az elektród felületéhez történő lassú diffúziója szabja meg. Értéke a következő egyenlettel számítható:
	$j_{\rm L} = zFD\frac{c}{s'}$
	ahol z az elektródreakcióban résztvevő részecske töltése, F a Faraday- állandó, D a részecske diffúziós együtthatója az adott közegben, amelyben koncentrációja c , és δ pedig az ún. Nernst-féle diffúziós réteg vastagsága (általában kb. 0,1 mm).
akkumulátor	Az akkumulátorok ún. szekunder elemek. Jellemzőjük, hogy áramtermeléskor galvánelemként, külső áramforrással történő töltésükkor pedig elektrolizáló cellaként működnek.
	Az ólomakkumulátor az egyik legrégebben kifejlesztett szekunder elem, de máig is a legjobb eszköz gépkocsik indítására.
ólomakkumulátor	Az ólomakkumulátor az egyik legrégebben kifejlesztett szekunder elem, és máig is a legjobb eszköz gépkocsik indítására. A gyakorlatban alkalmazott ólomakkumulátor (elektrolit kb. 20 %-os kénsav) cellafeszültsége a töltöttségtől függően 1,99-2,13 V között változik .
	Szerkezete töltés előtt: (–)Pb PbSO4 H2SO4 Pb(+)
	Az ólomakkumulátor töltéskor (elektrolízis) lejátszódó folyamatok a következők:
	a katódon (-): $PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$
	az anódon(+): PbSO ₄ + 2H ₂ O $-2e^- \rightarrow$ PbO ₂ + 4H ⁺ + SO ₄ ²⁻
	Bruttó folyamat töltéskor: $2PbSO_4 + 2H_2O \rightarrow Pb + PbO_2 + 4H^+ + 2SO_4^{2-}$
	Szerkezete kisütés előtt: (–)Pb PbSO ₄ H ₂ SO ₄ PbO ₂ Pb(+)
	Az ólomakkumulátor kisütésekor (áramtermelés) fordított folyamatok

	játszódnak le: a katódon (-): Pb + SO ₄ ²⁻ – 2 $e^ \rightarrow$ PbSO ₄
	az anódon(+): $PbO_2 + 4H^+ + SO_4^{2^-} + 2e^- \rightarrow PbSO_4 + 2H_2O$
	Bruttó folyamat kisütéskor: Pb + PbO ₂ + $4H^+$ + $2SO_4^{2-} \rightarrow 2PbSO_4$ + $2H_2O$
nem-termikus aktiválás	A nem-termikus aktiválás példái: dinamikus elektrokémia, fotokémia,
non-thermic activation	sugárhatáskémia (radiokémia), mikrohullámú kémia, magnetokémia, szonokémia (ultrahang), mechanokémia, tribokémia (a súrlódó felületek és a kenőolaj kémiai változásainak vizsgálata).