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Analysis of a chemical model for the BelousovÈZhabotinsky reaction leads to an analytic form for the dispersion relation for
waves travelling in such a medium. It is found that the velocity varies as the hyperbolic tangent of the normalized period. Data
analysis suggests that the normalization time is the selected spiral period for the medium. This result agrees with previously
published data, one-dimensional as well as two-dimensional, all of which can be rescaled onto a single dimensionless curve. It
thus provides a unifying approach to all waves in this reaction.

1 Introduction
Spiral waves are ubiquitous in spatially distributed chemical
and biological systems whose local kinetics are excitable.1
Such media include reactionÈdi†usion systems,2 cardiac
muscle tissue,3,4 nerve axons5 and aggregating slime mould
cells.6,7 Much experimental and theoretical work has been
devoted to understanding the formation and dynamical
properties of spiral waves in excitable media.8h10 In particu-
lar, waves in heart tissue have been studied extensively since
they are believed to play an essential role in heart diseases.11
On the other hand, chemical systems, such as the well known
BelousovÈZhabotinsky (BZ) reaction12 or the surface-
catalyzed oxidation of CO on platinum13 have provided the
most suitable media for controlled laboratory experiments.

A rotating spiral wave is a simple dynamical pattern char-
acterized by two parameters :14 pitch p and rotation period T .
In excitable media such as the BZ reagent, periodic waves are
known to travel at a speed c(T ) which depends upon the
period of excitation. This relationship, known as the disper-
sion relation, is important to understanding the dynamics of
one-or two-dimensional wave propagation. It also plays an
essential role in the selection mechanism by which spirals in a
given medium always develop a unique pitch and periodps Ts .Although there have been several measurements of the dis-
persion relation in various BZ media,15h24 only recently was a
successful rescaling discovered.24 SpeciÐcally, it was found, in
experiments on spiral waves, that an appropriate rescaling
collapses all experimental data onto a single line M vs. x,
resulting in a universal dimensionless plot for all spiral waves ;
M \ p2/T D is the e†ective di†usion enhancement due to
spiral wave propagation, where p2/T is the so called internal
di†usion coefficient of the spiral pattern, D is the characteristic
di†usion coefficient of the BZ reagent, and is thex \ T /T srotation period normalized by the selected spiral period ATs .linear Ðt of the dimensionless plot leads to an analytical form
for the dispersion relation that provides a satisfactory Ðt,24
but with neither theoretical nor chemical justiÐcation.

In this paper, we Ðrst derive an analytical form for the dis-
persion relation in the BZ reagent. The new formula is based
on the analysis of a two-variable dynamical model for the BZ
system and on general considerations for excitable reactionÈ
di†usion media. We then brieÑy describe the details of our
previous experiments, and reanalyse the results, together with
other published dispersion curves for the BZ system, in terms
of our formula. We show that the analytical form satisfactorily

Ðts all previous data, and that an appropriate rescaling does
indeed permit analysis and comparison in terms of the dimen-
sionless variables x and M. Finally, we discuss the implica-
tions for further work on chemical waves.

2 Derivation of the dispersion relation
Currently, it is widely accepted that the spatio-temporal
behaviour of two-dimensional BZ media can be described by
the following set of coupled reactionÈdi†usion equations :
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eqn. (1) and (2) are based on the TysonÈFife reduction25 of the
Oregonator model26 for the BZ reaction. In the ferroin-
catalysed BZ system, the variables u and v represent the
dimensionless concentrations, respectively, of HBrO2(propagator species) and of the oxidized form of the catalystÈ
ferriin (controller species) ; t is dimensionless time, while e @ 1
is a constant relating the timescales of the fast u variable and
the slow v variable ; is the ratio of the correspond-d \ D

v
/D

uing di†usion coefficients and +2 is the two-dimensional Lapla-
cian in rescaled spatial coordinates. Values of the
model-related parameters f and q depend upon the chemical
constitution of the BZ reagent.25

However, recent experiments have shown that the
Oregonator fails to describe spiral waves quantitatively.14 In
particular, the experimentally observed concentration e†ects
of the main reactants (such as sodium bromate, sulfuric and
malonic acids) are di†erent than those predicted by the model.
It, nevertheless, provides a satisfactory qualitative description
of both the pattern itself, and to some extent of the chemistry
involved. More speciÐcally the excitable nature of the medium
is properly reproduced, as well as the structure of the chemical
front.

The excitable behaviour of eqn. (1) and (2) is related to the
saw-tooth form of the u nullcline shown in Fig. 1(a). The
system is at rest at the intersection of the two nullclines, where

and Small perturbations rapidly relax to rest,u \ ur v\ vr .but perturbations above a certain threshold move the system
over the middle section of the u nullcline, and generate a pro-
pagating pulse. In the front of the pulse, the medium jumps
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Fig. 1 (a) Sketch of the phase plane for model eqn. (1) and (2). Vari-
ables u and v deÐne the instantaneous state of the system. Thin lines
are the so-called nullclines. The u nullcline corresponds to the solu-
tion of where stands for the right-hand side of eqn. (1)u5 \ 0, u5
without the di†usion term. The v nullcline is calculated by using eqn.
(2) without the di†usion term. The system is at rest at the intersection
of the two nullclines The thick line shows a typical phase-(ur , vr).plane trajectory when periodic waves are generated in the medium. vfand indicate the constant levels of the controller variable v in thevbsuccessive wavefronts and wavebacks, respectively. (b) Typical concen-
tration proÐle of the slow v variable (left vertical axis) when a pulse
sweeps through the medium. is the value at rest, while is thevr vbmaximum value at When wave trains are generated with periodT

`
.

T , the value of v drops from to only, then it jumps up again tovb vf vb(not shown in the Ðgure). The Ðgure also shows the increase in the
wave velocity c (right vertical axis) as an arbitrary function of the
period of excitation. is the maximum velocity in a given medium.c=

from the rest to an excited state (up), while in the back it
relaxes to rest (down). Consequently, there are two waves : a
wavefront and a waveback associated with the up- and down-
jumps in the medium.

Tyson and Keener8 have shown that the direction of a wave
and its speed c are determined by the level of controller
species v in front of the wave. Typically, c(v) is a decreasing
function of v : a high level of the controller species slows down
the wave. It is important to note that c(v) changes sign at
some When periodic perturbations are applied,v

*
½ [vr , vmax].the controller levels and in the successive wavefronts andvf vbwavebacks, respectively, approach constant values, such that

the wavefronts and wavebacks travel at the same speed
Thus the pattern becomes strictly periodic. Thec(vf)\ o c(vb) o .period T of the wave train is the sum of the durations of the

up- and down-jumps, and respectively.T
`

T~ ,
Fig. 1(b) shows a typical concentration proÐle of slow vari-

able v when a pulse sweeps through the medium. As T
`

@ T~ ,
an approximate value for period T can be calculated by
solving :

T B T~\
P
vb

vf dv
(dv/dt)~

(3)

where is the rate equation for variable v during the(dv/dt)~down-jump. Since during the down-jump the rate equa-u @ v,
tion from eqn. (2) is (neglecting the spatial variations) :

(dv/dt)~B [v/q (4)

where q is a relaxation time characterizing the kinetics in the
back of the wave.¤ Substituting the right-hand side of eqn. (4)
into eqn. (3), and evaluating the integral, leads to the following
formula :

T B [q ln
vf
vb

(5)

We now make an additional assumption that both andvb vfremain close to i.e. the fronts travel slowly, and linearizev
*

,
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Since we impose that with we canc(vb) \ [c(vf) vf \ v
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write Using these expressions forvb \ v
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tanh(T /2q) (7)

As the linearized wavefront velocity is c\ aD, we Ðnally get :

c(T ) \ c= tanh(T /T
*
) (8)

This equation is characterized by two parameters : thec= ,
velocity for inÐnitely spaced fronts, and a chemical time-T

*
,

scale. In principle, these parameters should be deduced from
the model. Owing to our preceding remarks regarding the reli-
ability of the Oregonator model, we will keep the functional
form and consider these quantities as adjustable parameters.

The functional form of eqn. (8) has the expected global
shape for the dispersion relation in BZ media :27,28 the veloc-
ity increases slower than linearly for low periods and saturates
for large T values. In addition, it naturally implies a scaling
form for M. If we denote thenm \ T /T

*
,

M \ bm tanh2 m ; with b \ c=2 T
*
/D (9)

3 Review of experiments and data analysis
The experimental determination of the dispersion relation for
spiral waves in various BZ media14,24 was performed using an
open spiral reactor.24,29 It is made of two continuously fed,
well stirred tank reactors separated by a thin porous glass
disk. Though chemical gradients exist perpendicular to the
disk, pattern formation takes place only inside the disk, which
is treated as a two-dimensional reactionÈdi†usion system. The
advantage of using an open spatial reactor is that the com-
position of the medium does not change with time ; thus true
stationary patterns can be observed. On the other hand, the
sensitivity of the ferroin-catalysed BZ system to visible light30
allows us to impose a di†erent period and pitch on the spiral
without changing the chemical composition.

Local application of red laser light to the spiral core slows
down the reaction in that region because of the light-induced
production of bromide ions,31 an inhibitor species of the BZ
reagent. As the reaction becomes slower in the spiral core, the
entire spiral rotates more slowly as the pitch increases. Fig. 2
shows the transient spiral shape after the laser beam has been
turned on. Eventually the spiral reaches a new steady state. As
the intensity of the laser beam is increased, the inhibitory
e†ect also increases, resulting in even slower rotation and
larger pitch. When the laser beam is turned o†, the medium

¤ Note that, from this point onward, all variables and parameters
are dimensional. However, for simplicity we do not introduce new
symbols.
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Fig. 2 Evolution of a spiral after the laser beam, focused at the spiral
core, has been turned on. The spiral has a diameter of 20.25 mm.
Concentrations are : M, M,[H2SO4]0\ 0.3 [NaBrO3]0\ 0.40

M, mM, mM and[MA]0A \ 0.40 [NaBr]0A \ 30 [SDS]0A \ 0.03
mM. Superscripts A and B designate the reactors into[ferroin]0B\ 1.0

which the chemicals are introduced. MA: malonic acid, SDS: sodium
dodecyl sulfate and ferroin : tris(1,10-o-phenanthroline)iron(II) complex
ion.

recovers and the spiral returns to its selected pitch and
period.24

The dispersion relation is constructed by plotting the wave
speed c(T ) as a function of rotation period T . These spiral
wavefronts provide an approximation to the dispersion rela-
tion for Ñat periodic waves in one- or two-dimensional BZ
media. The velocity of a curved wavefront can be written as27

c2D(T )\ c(T )[ Di (10)

where c(T ) is the velocity of a plane wave, D is the di†usion
constant of the medium, and i is the curvature of the wave-
front. In this experiment14 DB 4 ] 10~6 cm2 s~1 and for a
typical spiral i B 10 cm~1 after one turn, which means that,
over most of the spiral, the observed velocity p/T (B10 lm
s~1) is approximately equal to the plane wave velocity c(T ).
Measurements are made at least Ðve turns from the spiral
centre, where the curvature e†ects are negligible, so that the
measured dispersion relation is that relevant to plane waves.
Thus these experiments utilize the spiral only as a wave
source. As long as there is no meandering, the results do not
depend on the dynamics of the tip. This question has been
treated elsewhere both theoretically8,27 and experimentally.14

In Fig. 3(a), we represent the same experimental data as
those of Fig. 4 in ref. 24. These data, numbered IÈV, corre-
spond to Ðve di†erent experimental conditions listed in Table
1. As the direct least-mean-square Ðts by eqn. (8) provide

Fig. 3 (a) Speed c(T ) of spiral fronts as a function of rotation period
T for data IÈV. Solid lines are Ðts by eqn. (8). The Ðtted values are
reported in Table 2. Symbols : (]) I, (]) II, III, IV, V. (b)()) (K) (L)
Same data as in (a) but represented as M vs. x.

values of close to the selected spiral periods found in theT
*experiments, it suggests the equality

T
*

\ Ts (11)

Thus, one could use x instead of m. This constraint has been
imposed to Ðt The Ðtting values are summarized in Tablec= .
2. As seen in Fig. 3(a), eqn. (8) with constraint (11) gives an

Table 1 Characteristics of the analysed experimental data

d ref. [H2SO4]/M [BrO3~]/M [MA]/M [ferroin]/mM conditions pattern

I 24 0.2 0.4 0.4 1.0 open CSTR 2D spiral
II 24 0.3 0.4 0.4 1.0 open CSTR 2D spiral
III 24 0.4 0.4 0.4 1.0 open CSTR 2D spiral
IV 24 0.5 0.4 0.4 1.0 open CSTR 2D spiral
V 24 0.4 0.15 0.2 1.0 open CSTR 2D spiral

A 19 0.18 0.33 0.12 2.9 closed capillary 1D
B 20 0.2 0.31 0.08 2 closed Petri 2D target
C 21 0.21? 0.22 0.048? 3.8 Petri 2D target
D 17 0.34 0.31 0.12 2.9 agar gel 2D spiral
E 18 0.77 0.57 0.33 Ru(bpy)32` silica gel 2D spiral
F 22 0.2 0.25 0.05 in resin in resin 2D spiral
G 15 0.38 0.39 0.095 3.5 closed Petri 2D target
H 23 \0.2 \0.3 \0.025 2.25 PA gel quasi 1D
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Table 2 Measured and Ðtted values used in Ðgures

experimental values Ðtted values

d Ts/s cs/lm s~1 c=/lm s~1 T sF/s csF/lm s~1 c=F /lm s~1 D/lm2 s~1 M(1)

I 18.7 33.7 18.7 34.8 45.7 420 54
II 11.3 42.1 11.3 45.3 59.5 420 55
III 7.3 51.0 7.3 54.1 71.1 420 51
IV 5.8 64.0 5.8 63.7 83.7 420 56
V 22.1 30.4 22.1 31.2 41.0 420 51

A 60È75 46.7 79.2 79.0 60.3 79.2 2000 144
B [28 90.3 39.6 68.8 90.3 2000 96
C [81.4 [45.3 56.7 94.9 43.2 56.7 2000 88
D 19È22 55 125 21.6 95.2 125 1500 131
E 26 49.6 26 62.3 81.7 1500 67
F 35 146 26.7 35 1000 104
G 17.3 76 125 21.9 87.5 114.9 1900 88
H [1225 [6.33 \15.7 3576 13.0 17.1 1000 607

Quantities written in italics have been imposed, while those in bold have been Ðtted ; and M(1) values have been deduced from the Ðts.csFNumbers I to V and letters A to H refer to conditions given in Table 1.

excellent Ðt (solid curves) to the data. However, the analysis of
data in Table 2 shows that the resulting value for is system-csatically a few per cent higher than the measured one. This
point will be addressed later.

We also represent the same data in Fig. 3(b), using the M(x)
representation. The continuous lines correspond to the same
curves that directly Ðt c(T ) in Fig. 3(a). The slight variations
arise from the small dispersion of M(1). Note that the actual
value of the di†usion coefficient is necessary to compute M.
We have used D\ 4.2] 10~6 cm2 s~1.14 This value, smaller
than the earlier reported value for BZ systems in solution, has
been measured for the BZ media in the porous glass disk of
the open reactor used in ref. 24.

Assuming that has important consequences ; in par-T
*

\ Tsticular, it Ðxes the ratio at tanh (1) B 0.76. This value iscs/c=larger than the previously estimated ratio of 0.62 that arose
from a linear Ðt of M.24 However, as can be checked using
Fig. 3(b), both ratios are compatible with the data owing to
the small variation of the hyperbolic tangent for arguments
greater than 1.

4 Comparison with other data
In order to check eqn. (8) and (9) with the constraint (11), we
compare a number of published experimental dispersion rela-
tions obtained in various experimental conditions in the BZ
reaction. and Marek16 provided the Ðrst attempt toS‹ evc— •� kova�
compare experimental results quantitatively with theoretical
predictions28 which, at that time, arose from the Oregonator.
They concluded that a proper agreement was still lacking. We
consider those analysed in ref. 16 and add four more arti-
cles.15,18,22,23 The di†erent characteristics and experimental
conditions of the data we compare are summarized in Table 1.

All experiments but one (H) were run in batch reactors,
where the system ages ; this was pointed out in ref. 17. All
concentrations are di†erent ; sometimes bromide was also
added. Ferroin was used as the catalyst in all cases except E,
where ruthenium bipyridyl was used instead. Some curves
have been measured in thin layers of BZ solutions (B, C and
G), one in a capillary (A), whereas others have been obtained
in di†erent kinds of immobile media, either silica gel (E), agar
gel (D), polyacrylamide gel (H) or resin (F). Experiment H is
markedly peculiar, since permanent gradients are established
within the reaction domain ; its timescales are an order of
magnitude longer than the others. Finally, satisfactory data
for the corresponding spiral in the same experimental condi-
tions are available in a few cases only : A (but the spiral has
not been done in a capillary), D (but the spiral was meander-
ing, hence its period and front velocities were ill deÐned), E

(but the dispersion curve was only roughly obtained), and G
(but a di†erent batch had apparently been used). However, all
dispersion curves have the same characteristic shape described
earlier.

The actual values of c and T have been obtained by
copying the published dispersion curves and measuring them
o† the graphs. In order to Ðt the data, we have imposed the
known quantities to be those found experimentally. For data
sets A to D and F we have imposed the measured values of

For experiment E the known value of has beenc= . Tsimposed instead. In the case of G both and were known,Ts c=but direct substitution into eqn. (8) did not give a satisfactory
Ðt. Hence, for this one and for H, where not values but rather
bounds on them were given, we Ðtted both and TheT s c= .
results are reported in Table 2 and represented in Fig. 4. As
can be seen, most data are well Ðtted. Two sets only seem to
depart slightly : D and F. In the former case, this may be due
to the meandering of the spiral. In the latter case, it just falls
within the large dispersion of the experimental data (see Fig. 2
in ref. 22). Note that the Ðt for H does not appear in Fig. 4
because the timescales are signiÐcantly larger, however, the
obtained Ðt is of similar quality.

A direct check of eqn. (9) requires more care. Once is set,Tsthe scaling variable x is given. Then the value of M only
depends on b, which is a function of and both beingTs c= ,

Fig. 4 Speed c(T ) of periodic waves as a function of excitation
period T for data AÈG. Solid lines are Ðts by eqn. (8). The Ðtted
values are reported in Table 2. Symbols : (]) A, B, C, (]) D,(L) (K)

E, F, (Q ) G.()) ()])
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Fig. 5 Dimensionless plot of m\ M(x)/M(1) vs. x for all data in
Table 1. The solid curve corresponds to the theoretical Ðt imposed by
eqn. (8). Symbols are as in Fig. 3 and 4, and H.(T)

Ðxed by the Ðt of the dispersion curve, and also of the di†u-
sion coefficient D. This coefficient, which sets the absolute
scale of M, cannot be deduced from the dispersion relation
data. In Table 2, we report the di†usion coefficients we have
used (and guessed somewhat arbitrarily when not available)
and the values of M(1) that have been calculated from the Ðts.
There is a rather large dispersion for the values of M(1), in
seeming contradiction with claims of a limited available
range.14,24,32,33 However, the controversy on this matter is
not yet settled. In addition, the true values for the di†usion
coefficients are hardly available and could easily be overesti-
mated by a factor of 3. This would bring all M(1) closer. The
case of H should be considered separately, because of its par-
ticular geometry ; although the dispersion relation should
apply, since it is characteristic of the medium, there is no
reason to Ðnd a spiral value for M(1).

Hence, to check the functional form of eqn. (9), we have
normalized M(x) by M(1) to eliminate the di†usion coefficient.
Plotted in logÈlog in Fig. 5 is m(x)\ M(x)/M(1) for all
analysed data (13 experimental dispersion curves). For this
plot, the only Ðtted quantity is used to normalize theTsperiods in x. The solid curve corresponds to the theoretical Ðt
imposed by eqn. (8). The agreement is excellent.

5 Conclusion
Starting from model equations for the BZ reaction, we have
derived a dispersion relation which states that the velocity
varies as the hyperbolic tangent of the normalized period.
Data analysis suggests that the normalization time is the
selected spiral period for the medium. This explains the
scaling observed experimentally in ref. 24. Though the func-
tional form of the dispersion relation has been obtained by
considerable simpliÐcations, it, nevertheless, provides an excel-
lent Ðt to a large number of available published data.

However, a more detailed analysis of the data shows that
the experimentally observed velocities at selection are slightly

di†erent from the predicted ones, increasingly so as the selec-
ted period becomes smaller. This may mark the validity limits
of our analysis. Indeed, for small periods, it is likely that isT

`no longer negligible with respect to Although a reÐnedT~ .
theory is still required in this limit, we might say that we are
now beginning to have a unifying approach to dispersion
curves for the BZ reaction.
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