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a b s t r a c t

We investigate the effect of changing mass transfer conditions through variation of rotation rate of a

rotating disk electrode on features of oscillatory dynamics of negative differential resistance electro-

chemical systems. The theoretical analysis and numerical simulation of a prototype two-variable

electrochemical model show that for oscillations close to a Hopf bifurcation the frequency (o) increases

with increase in rotation rate (d) following an approximate square root formula opd1/2. For relaxation

oscillations, the oscillations maxima, minima, and transition points between the high- and low-current

states do not depend on rotation rate; the oscillation waveform invariance is explained using nullcline

analysis by showing that the rotation does not affect the nullcline of the fast variable (electrode

potential) along which the oscillations occur. The numerical and theoretical predictions are confirmed

in experiments with copper electrodissolution in phosphoric acid electrolyte using a rotating electrode

setup. The results thus indicate that simplifying concepts related to invariant manifolds and parameter

dependence of bifurcation points (principle of critical simplification) are efficient approaches to

obtaining quantitative dynamical relationships for decoding complexity in electrochemical reaction

systems.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Efficient design of chemical reactors often requires theoretical
treatment of complex chemical systems in which the dynamics is
strongly influenced by emergent effects of principles of thermo-
dynamics, reaction kinetics, and mass and heat transfer
(Newman, 1968). Simplifying concepts greatly enhance the suc-
cess of mathematical tools (e.g., those of nonlinear dynamics) for
decoding the dynamical complexity (Epstein and Pojman, 1998).
General, reliable mathematical techniques have been developed
(Gorban et al., 2007) with which description of systems of many
degrees of freedom is possible with only a few variables. Major
directions with remarkably different approaches include the use
of invariant manifolds (Bykov et al., 2008; Gorban and Karlin,
2003, 2005; Roussel and Fraser, 2001), coarse graining dynamics
(Bindal et al., 2006; Kevrekidis et al., 2004; Theodoropoulos et al.,
2000), and principle of critical simplification (Yablonsky et al.,
2003). Location of invariant manifolds can greatly enhance
description of nonlinear systems which are strongly influenced
by the presence of small parameters (Strogatz, 2000). For exam-
ple, nullcline techniques have been used for interpretation of
ll rights reserved.

: þ1 314 2521.
relaxation oscillation in chemical reacting systems by identifica-
tion of fast and slow variables and their distinct dynamics; in
these examples, the small parameter is the ratio of the typical
timescales of the fast and slow variables (Gáspár et al., 1991;
Scott, 1994). The ‘principle of critical simplification’ (PCS) aims to
describe the system by competing processes near bifurcation
points without isolation of limiting steps typically used in
classical quasi-stationary treatments (Yablonsky et al., 2003). An
application of PCS, which is a combination of bifurcation theory
and singular perturbation, resulted in relatively simple rate
equations of catalytic CO oxidation at the saddle-node bifurcation
point. The simplifying concepts thus often fill the gap between
the relatively simple experimental results on dynamical behavior
and parametric dependence of self-organized critical behavior
and the complicated, multi-scale theoretical description of the
systems that applies combination of strongly nonlinear ordinary
and partial differential equations.

Electrochemical systems provide excellent examples where multi-
scale modeling of charge-transfer chemical reactions, distribution of
charged substances in the electrical double-layer, potential and
current distribution in the electrolyte, and diffusion and convection
of the electrolyte are required to describe the behavior of galvanic or
electrolytic cells (Boovaragavan et al., 2009; Newman and Thomas-
Alyea, 2004). Nonetheless, low-dimensional models that use electrode
potential and near surface and Nernst diffusional layer concentrations
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of substances have proved to be sufficient in interpreting saddle-
node, Hopf, homoclinic, and period-doubling bifurcations in bistable
and oscillatory dynamics (Hudson and Tsotsis, 1994; Kiss et al., 2011;
Koper, 1996; Krischer, 1999; Krischer and Varela, 2003; Plenge et al.,
2003). Because of the time-scale separation of the electrode potential
(fast variable due to fast double-layer charging) and the concentration
of substances (slow variables), nullcline techniques have been
successfully applied to interpret the existence of oscillations and
multistationary behavior (Koper, 1996; Krischer, 1999; Toni et al.,
1998). In large majority of electrochemical systems, the rate of
reaction (expressed as Faradayic current) exhibits negative differen-
tial resistance (NDR) in a certain region of the overpotential; this
negative differential resistance is the major source for oscillations and
bistability (Strasser et al., 1999).

There exist a few skeleton models for NDR systems that can give
proper qualitative picture of the bifurcation structure in wide class of
electrochemical systems (Krischer, 1999; Strasser et al., 1999). Using
such a simple model, we have derived and experimentally verified a
scaling relationship for the dependence of Hopf bifurcation points on
electrode surface area and rotation rate of the electrode that affects
the mass transfer of electroactive species through changes in the
thickness of the Nernst diffusion layer (Kiss et al., 2009a). Similarly, a
simple frequency formula was derived that approximated the fre-
quency of the oscillations in the Hopf bifurcation point as the inverse
geometric mean of the electrical (double layer charging, capacitance x
cell resistance) and chemical (Nernst diffusion layer thickness/rate
constant) time-scales of the system (Kiss et al., 2009b). The theore-
tically predicted dependence of oscillation frequency on cell resis-
tance has been experimentally confirmed in Cu electrodissolution
(Kiss et al., 2009b).

In this paper, we investigate the effect of rotation rate on
oscillatory dynamics of negative differential resistance electro-
chemical systems. For electrochemical systems with unique
stable steady-state under mass transfer control the current, i,
depends on the square root of the rotation rate (d) according to
the classical Levich equation, ipd1=2 (Bard and Faulkner, 1980;
Levich, 1962). Here, we study quantitative dynamical relation-
ships related to rotation rate dependence of strongly nonlinear
oscillatory electrochemical systems for which mass transfer con-
trol plays an important role. For oscillations close to Hopf
bifurcation, we derive a relatively simple equation for the fre-
quency dependence on rotation rate by combining the previously
obtained frequency formula (Kiss et al., 2009b) and rotation rate
dependence of bifurcation points (Kiss et al., 2009a). For relaxa-
tion oscillations (that occur farther away from Hopf bifurcation),
the waveform (maximum and minimum, and other characteristic
points) of oscillations is analyzed as a function of the rotation rate
using nullcline technique. The numerical and theoretical results
obtained with a prototype two-variable model are verified in an
experimental system: Cu electrodissolution in phosphoric acid.
We have chosen Cu electrodissolution because the reaction has
high level of reproducibility (Kiss et al., 2009a, 2009b) and the
dynamical features have been well characterized (Albahadily
et al., 1989; Albahadily and Schell, 1988; Glarum and Marshall,
1985; Schell and Albahadily, 1989); for example, it was shown
that the amplitude exhibits a square root dependence on distance
from the bifurcation point as the circuit potential is increased.
(Albahadily and Schell, 1988) Finally, we discuss the agreement
between experimental and numerical results, the relationships to
the classical Levich equation, and the generality of the findings.
2. Material and methods

Experiments were performed by using a standard three-electrode
electrochemical cell equipped with a 5 mm diameter copper rotating
disk electrode (RDE), a Pt-sheet counter electrode, and a Hg/Hg2SO4/
saturated K2SO4 or saturated calomel reference electrode. A potentio-
stat (Elektroflex EF451 or Pine AFCBP1) was applied to set the
potential (resolution 0.01 mV) between the working and reference
electrodes. All potentials are given with respect to Hg/Hg2SO4/
saturated K2SO4 electrode. The current was measured with the
ammeter built in the potentiostat. The sampling frequency for data
acqusition was 200 Hz. The temperature of the cell was maintained
with a circulating bath at the given values (�5, 5, or 10 1C)70.1 1C.
The electrolyte was 85% ortho-phosphoric acid. The surface of the
copper electrode (99.99% purity) was wet polished by a series of
sandpapers (P180–P4000). Before experiments cyclic polarization
curves were obtained between �150 and 500 mV to ensure that
previously observed behavior (Kiss et al., 1998) is reproduced. After
this electrode pretreatment, the uncompensated series resistance was
measured with impedance spectroscopy (Bard and Faulkner, 1980;
Kiss et al., 1998), which was found to be Ru¼3575 O. The working
electrode was connected to the potentiostat through an external
resistance Rext; the total resistance R of the cell is the sum of the
external resistance Rext and the uncompensated series resistance Ru.
With the experimental results we always give and discuss the total
resistance R. Additional experimental procedures (e.g., electrode
pretreatments and polarization curves) are described in previous
publications (Kiss et al., 1997, 1998, 2009a). The frequencies of the
current oscillations were determined as the inverse of the mean peak-
to-peak periods.

Numerical tools: the ordinary differential equations were
solved numerically with XPPAUT program package (Ermentrout,
2002) applying a Gear method with absolute error limit of 10�6.
3. Results

3.1. Theory and simulation

3.1.1. Effect of rotation rate on frequency of electrochemical

oscillators close to Hopf bifurcation theory

Previous quantitative relationships (Kiss et al., 2009a, 2009b)
about the dynamics of a potentiostatic N-NDR type electroche-
mical oscillator were derived using a prototype model (Koper and
Sluyters, 1991)

Cd
de

dt
¼

V�e

AR
�nFkðeÞc ð1Þ

dc

dt
¼�

2

a
kðeÞcþ

2D

a2
ðc0�cÞ ð2Þ

The equations utilize charge balance (Eq. (1)) and mass
balance (Eq. (2)) to describe the behavior of essential variables:
the electrode potential e and near-surface concentration of the
electroactive species, c. Model parameters are the surface area (A)
and the double layer capacitance per surface area (Cd) of the
electrode; the number of electrons in the reaction (n), circuit
potential (V), total series resistance (R), Nernst diffusion layer
thickness (a); D and c0 are the diffusion constant and the bulk
concentration of the electroactive species, respectively. F is the
Faraday constant. k(e) is the potential dependent rate constant;
for NDR systems in this study k(e) exhibits N-shaped dependence
on e with a negative differential resistance region. (Koper, 1996;
Krischer, 1999) The experimentally observable quantity, the
current is obtained as i(t)¼(V�e(t))/R.

The frequency of the oscillator was analyzed at a Hopf
bifurcation point, and it was found that an approximation (upper
limit) of the frequency (in unit of Hz) can be given as (Kiss et al.,
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o¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðeHÞ

aCdRA

s
ð3Þ

where eH is the electrode potential at the bifurcation point. Note
that the simplicity of the equation lies in the use of eH that
depends in a complicated manner on system parameters (most
importantly, V and R). By noting that the electrical (tel) and
chemical (tchem) time scales in the system can be identified as

tel ¼ CdAR and tchem ¼
a

2k
ð4Þ

we can also express the frequency with the inverse of the
geometric mean of the electrical and chemical time-scales

o¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tchemtel

s
ð5Þ

Note that in electrochemical systems typically tel5tchem,
because charging the double layer is a fast process compared to
the slower chemical reactions (Bard and Faulkner, 1980).

Here, we consider the dependence of frequency on rotation
rate (d) that affects only the Nernst diffusion layer thickness a in
Eq. (3) through the well known Levich formula (Bard and
Faulkner, 1980)

a¼ 1:61D1=3n1=6d�1=2
ð6Þ

where n is the kinematic viscosity. The expression of a in Eq. (6)
can be substituted into Eq. (3) to give the frequency at the
bifurcation point

o¼ d1=4

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðeHÞ

1:61D1=3n1=6CdRA

s
ð7Þ

However, as the rotation rate is changed, the position of the
Hopf bifurcation point, and thus eH is changed. A convenient
experimental procedure could include a primary change of rota-
tion rate after which the total cell resistance (R) is adjusted such
that the bifurcation point (with changes in circuit potential V)
occurs at the same eH value. Therefore, we can rearrange Eq. (7) as

o2R¼ d1=2 2kðeHÞ

1:61D1=3n1=6CdA4p2
ð8Þ

or

o2Rpd1=2
ð9Þ

Therefore, a plot of o2R vs. d1/2 should give a straight line that
starts from the origin.

In a previous publication (Kiss et al., 2009a), we have shown
that at the Hopf bifurcation point

RA�Cn
¼

Dnffiffiffi
d
p ð10Þ

where Cn and Dn are constants that depend on eH, D, c0, n, and F.
Using Eq. (10) for the R value in Eq. (9) yields

o2
p

ffiffiffi
d
p

Cn
þðDn=

ffiffiffi
d
p
Þ

ð11Þ

For typical oscillatory conditions Cn is smaller than RA (Kiss
et al., 2009a); therefore, for relatively large external resistances
RA�Dn=

ffiffiffi
d
p

; this equation can be substituted in Eq. (9) to give

op

ffiffiffi
d
p

ð12Þ

Eq. (12) thus predicts that the frequency of the oscillations at
the bifurcation point could exhibit an approximate square root
dependency on rotation rate when the Hopf potential eH is kept
constant by adjustments of total external resistance R and circuit
potential V. Conversely, when the relationship predicted by Eq. (12)
is recovered in an experiment, it is an indication that the major
assumption Cn

5RA holds for the system. Note that the existence of
simple square root dependence of frequency on rotation rate is
strongly nontrivial and thus requires confirmation in numerical
simulations because of the assumptions used in the derivation.

3.1.2. Effect of rotation rate on frequency of electrochemical

oscillators close to Hopf bifurcation: simulation

Next we carry out numerical simulations to confirm the
rotation rate dependence of frequency (Eqs. (9) and (12)) in the
Koper–Gaspard model (Koper and Gaspard, 1992) reduced to
two-variables (Kiss et al., 2009a)

Ede

dt
¼

v�e

r
�120kðeÞc ð13Þ

dc

d~t
¼�1:25

ffiffiffi
d

p
kðeÞcþ

4

3
dð1�cÞ ð14Þ

where we use bar to denote dimensionless quantities that
formally correspond to the actual physical quantities in Section
3.1.1. (E is a time-scale parameter that corresponds to the double
layer capacitance). The potential dependent rate constant is
defined as

kðeÞ ¼ 2:5y
2
þ0:01exp½0:5ðe�30Þ� ð15Þ

where y is related to the potential dependent surface coverage by
the electroactive species

y¼
1 for er35

exp½�0:5ðe�35Þ2� for e435

( )
ð16Þ

Fig. 1a shows a typical, oscillatory current with a frequency of
o¼0.80 at E¼ 1, r¼ 0:035, and d¼ 0:115; the applied circuit
potential v¼ 36:752 was determined in such a way that it is just
above (by 0.001 increment) the Hopf-bifurcation point. The mean
value of the electrode potential oscillations approximate the Hopf
potential eH ¼ 35:448. The obtained frequency value can be
interpreted using the frequency formula (Eqs. (3) and (5)): the
electrical timescale in Eq. (13) is tel ¼ Er¼ 0:035, the chemical
timescale in Eq. (14) is

tchem ¼ 1= 1:25
ffiffiffi
d

p
kð35:448Þ

h i
¼ 1:0734

giving a frequency estimate using Eq. (5) as 0.82. The �3%
overestimate comes from neglecting the diffusional time-scale
contributions to the frequency (Kiss et al., 2009b). Note that the
ratio of the electrical and chemical timescales tel=tchem ¼ 0:0326
could be considered as small parameter often needed for strongly
nonlinear response.

To promote the use of the frequency equation, we propose a
simple potential step numerical experiment with which the
chemical time-scale of the reaction can be approximated. When
at low resistance value (r-0), the potential is stepped to a value
that corresponds to a Hopf potential, a transient current response
can be measured as shown in Fig. 1b. Because the electrical time-
scale is short (in the example it is 0.035) we shall see a decaying
current, which is governed by the equation for the near-surface
concentration of the chemical species. Diffusion is often a slow
process, therefore, the time-scale of the decay can be associated
with the time-scale of the chemical reaction. In Fig. 1c, the inverse
slope of the semilogarithmic plot corresponding to the exponen-
tial decay of the current gives the chemical time-scale as 0.91.
The frequency using this time-scale would be 0.89 which approx-
imates well the numerically found value (0.80).

In the following, we test the effect of rotation rate on the
frequency. Numerical simulations were performed for rotation



Fig. 1. Simulations: smooth periodic current oscillations close to Hopf bifurcation (top) and determination of chemical time-scale using step chronoamperometry (bottom)

in a prototype model for negative-differential-resistance electrochemical system (Eqs. (13) and (14)) at rotation rate d¼ 0:115 and E¼ 1. (a) Time series of current

oscillations with frequency of o¼0.80 Hz at r ¼ 0:035, v¼ 36:752; (b) potential step response with nearly strictly potentiostatic cell control (r¼ 1� 10�4). At t¼0 the

circuit potential was changed from v¼ 35:7 to 35:448; and (c) semilogarithmic plot for the exponential decay shown in panel b. The slope of the fitted line is �1.10.

(if ¼ 37:288 is the steady-state current value in panel b at v¼ 35:448).
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rate ranging from 0.0575 to 0.92. For each rotation rate, the
resistance and circuit potential were adjusted in such a way that
at the Hopf bifurcation point the electrode potential was set to
eH ¼ 35:44870:003 and the mean current and the frequency of
the oscillations were recorded. As it is shown in Fig. 2, the mean

current exhibits nearly square root dependence (/iSpd
0:40

) and
the resistance needed for oscillations decreases with increasing
the rotation rate close to the expected inverse square root

dependency /rSpd
�0:39

. More importantly, the o2r quantity

exhibits linear dependence on
ffiffiffi
d

p
and the dependence of fre-

quency on rotation rate is very close to the expected square root

equation (opd
0:45

).
The numerical simulations thus confirm that the frequency of

the oscillations, under the constraint of constant Hopf potential
and close to the Hopf bifurcation point, exhibits square root
dependence on rotation rate in a simple electrochemical model
for negative differential resistance electrochemical systems.
3.1.3. Effect of rotation rate on oscillation waveform for relaxation

oscillators

The model Eqs. (13) and (14) can also exhibit classical relaxa-
tion oscillations when the timescale parameter E in Eq. (13) is
decreased to 0.1. (This decrease is necessary to further decrease
the ratio of electrical and chemical timescales and thus provide a
possibility for the existence of slow invariant manifolds.) The
oscillations still arise through a supercritical Hopf bifurcation
with smooth waveform as the circuit potential is increased;
however, the oscillations slow down and develop strongly non-
linear waveform farther away from bifurcation point as shown in
Fig. 3. Analytical derivations for oscillation waveform and ampli-
tude for the region of potentials when the smooth oscillations
close to Hopf bifurcation are transformed to relaxation oscillators
is troublesome, however, some generalities can be observed about
the effect of rotation rate on oscillations with strong relaxation
character.

The relaxation oscillations are shown at fixed circuit potential
for various rotation rates in the range of d¼ 0:2–0.8 in Fig. 3. Note
that in contrast to oscillations in the Hopf region, we compare the
behavior at fixed circuit potential instead of the Hopf potential.
Therefore, the oscillations correspond to changing a single para-
meter. The relaxation oscillations consist of periods where, start-
ing from current minimum, the current slowly increases, abruptly
jumps to a high value, slowly decreases, and abruptly jumps to a
low value to reach the minimum again.

Close inspection of oscillation waveform (see Fig. 4a) reveals a
peculiar character of the waveform. The maximum, minimum, and
the transition points (quick jumps between the high and low current
states) occur at exactly the same current level at the different rotation
rates. Although there are significant changes in the waveform of the
current, these points remain unchanged during the oscillatory cycle.
The mean current of the oscillations, shown in Fig. 4b, does follow the
Levich equation (Bard and Faulkner, 1980): it increases with rotation
rate in a nearly square root manner (/iSpd

0:53
). This increase is

established by keeping the maxima, minima, and the transition points
of the oscillations at constant level. As it is shown in the oscillatory
waveform (Fig. 3a), at low rotation rate, the current stays low for
large period of the cycle and quickly returns. At large rotation rate
(Fig. 3d), the current stays at the high level stage for long period to
where it returns after a quick excursion to the low current state. The
mathematical explanation for establishment of Levich equation for
the mean current during the oscillation is very difficult.

The invariant maxima and minima of the oscillations and the
transition points can be interpreted using a nullcline technique.
The e variable is considered fast, therefore, the variations of e



Fig. 2. Simulations: effects of rotation rate on mean current, required resistance, and frequency for oscillations that occur close to Hopf bifurcation point at fixed Hopf

potential eH ¼ 35:448 with E¼ 1. (a) Nearly square root dependence of mean current on rotation rate. Inset: ln–ln plot giving slope 0.40; (b) nearly inverse square root

dependence of required resistance on rotation rate. Inset: ln–ln plot giving slope �0.39; (c) theoretically predicted linear relationship between o2r and d
0:5

. Dashed line:

linear fit. Inset: ln–ln plot giving slope 0.99; and (d) square root dependence of frequency on rotation rate. Inset: ln–ln plot giving slope 0.45.

Fig. 3. Simulations: relaxation current oscillations at different rotation rates at

r¼ 0:02, E¼ 0:1, and v¼ 37:000. (a) d¼ 0:2; (b) d¼ 0:4; (c) d¼ 0:6; and (d) d¼ 0:8.
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quickly disappear and the dynamics is restricted to the e nullcline
where de=dt¼ 0 in Eq. (13)

c¼
v�e

120rkðeÞ
ð17Þ

The nullcline is represented in the e vs: c relationship in Fig. 4c
and d. Note that the e nullcline does not depend on rotation rate.
For comparison, the c nullclines, where dc=dt¼ 0 in Eq. (14) is
also plotted in the figure

c¼
1

1þð15kðeÞ=16
ffiffiffi
d

p
Þ

ð18Þ

The c nullcine exhibits strong dependence on the rotation rate.
The oscillations take place along the stable branches (with

negative slope) of the e nullcline as shown in Fig. 4d. For example,
starting from point A, the system moves along the nullcline to
point B, where the stable branch of the e nullcline ends and thus a
quick jump to point C occurs; after this transition the system
slowly tracks the e nullcline again up to point D where a quick
jump occurs to point A and the cycle restarts. (Similar nullcline
analysis of electrochemical oscillations has been performed to
interpret the existence of bistability and oscillations (Koper,
1996; Krischer, 1999; Toni et al., 1998)).

According to Eq. (17), the e nullcline is independent of the
rotation rate. This is demonstrated in Fig. 4c where the nullclines
are shown as function of the rotation rate. The c nullcline,
however, exhibits strong dependence on the rotation rate. The
position of the c nullcline simply determines the velocity at which
the phase points rotate around the limit cycle; this velocity
depends on the rotation rate. Because of the independence of
the fast variable e nullcline on the rotation rate, no change of
maximum/minimum/transition points in the oscillation wave-
form is observed.

We thus see that for relaxation oscillators, the model equa-
tions predict that as the rotation rate changes, the amplitude (and
the transition points) will remain constant at constant circuit
potential. This invariance is strong indication that the rotation
rate parameter does not occur in the dynamical equation of the
fast variable, in our example, the electrode potential.



Fig. 4. Simulations: changes of characteristics of relaxation oscillations with increase in rotation rate. (a) Oscillation waveforms at different rotation rates. Thick solid line:

d¼ 0:2. Thick dashed line: d¼ 0:4. Thin solid line: d¼ 0:6. Thin dashed line: d¼ 0:8. The triangle and diamond symbols indicate the upper and lower transitions for the

waveforms; (b) square root dependence of mean current on rotation rate. Inset: ln–ln plot giving slope 0.53; (c) nullclines for fast variable electrode potential e (thick

dashed line) for slow variable c (thin lines). For c nullcline from bottom to top: d¼ 0:2 (solid), d¼ 0:4 (dashed), d¼ 0:6 (dotted), d¼ 0:8 (dash–dot); and (d) the e nullcline

(thick dashed line) and the oscillations at different rotation rates (d¼ 0:2: solid line, d¼ 0:4: dashed line; d¼ 0:6: dotted line; d¼ 0:8: dash–dot line) in the e�c plane.

Model parameters are same as in Fig. 3. Letters A, B, C, and D denote nullcline transition points that define the waveform of oscillations.

M. Urvölgyi et al. / Chemical Engineering Science 83 (2012) 56–65 61
3.2. Experimental results

We have performed a series of experiments with Cu electro-
dissolution to confirm the effect of rotation rate on frequency of
oscillation (close to Hopf bifurcation) and waveform (for relaxa-
tion oscillators).
3.2.1. Effect of rotation rate on oscillation frequency for oscillations

close to Hopf bifurcation

Fig. 5a shows current oscillations just above a Hopf bifurcation
(by about 5 mV) in the experiment with a frequency of
o¼2.545 Hz at V¼201 mV, d¼1000 rpm, and R¼77 O. From
the mean current of the oscillations (/iS¼4.293 mA) we can
approximate the Hopf potential as eH¼V�/iSR¼�130 mV.

It is possible to approximate the frequency of the oscillations
using the frequency formula (Eqs. (3) and (5)) and the chron-
oamperometric potential step described in Section 3.1.2. We have
measured the double layer capacitance of the electrode at open
circuit potential with impedance spectroscopy (Bard and
Faulkner, 1980) and obtained CdA¼30 mF. In Fig. 5a R¼77 O,
therefore, tel¼CdAR¼2.31 ms. In a chronoamperometric potential
step experiment shown in Fig. 5b and c we can approximate the
chemical timescale. The potential step was accomplished (with-
out added external resistance in the cell) to a value of circuit
potential where e¼�130 mV; this value corresponds to that of eH

in the oscillatory region. Linear fit to the semilogarithmic plot of
the exponentially decaying current (Fig. 5c) gives a slope of
�0.85 1/s, i.e., tchem¼1/0.85, s¼1.18 s. The frequency thus can
be calculated with Eq. (5) as o¼3.05 Hz. This is an excellent
approximation of the experimental frequency of 2.545 Hz. The
formula overestimates the frequency because it gives only an
upper bound. Note that similar to the numerical simulation in
Section 3.1.2, we can estimate the ratio of electrical and chemical
timescales: tel/tchem¼2.0�10�3. This small parameter is one
order of magnitude smaller than that obtained in numerical
simulation (0.0326).

Next we test the effect of rotation rate on the frequency.
Experiments were performed for rotation rate range 700–
1400 rpm. For each rotation rate, the resistance and circuit
potential was adjusted in such a way that at the Hopf bifurcation
point the electrode potential was eH¼�4870.5 mV and the
mean current and the frequency of the oscillations were recorded.
As it is shown in Fig. 6, the mean current exhibits nearly square
root dependence (/iSpd0:59) and the resistance needed for
oscillations decreases with increasing the rotation rate close to
the expected inverse square root dependency Rpd�0:45. The o2R

quantity exhibits linear dependence on
ffiffiffi
d
p

and the dependence of
frequency on rotation rate is very close to the expected square
root equation (opd0:47).

The experiments thus confirm that the frequency of the
oscillations, under the constraint of constant Hopf potential and
close to the Hopf bifurcation point, exhibits square root depen-
dence on rotation rate in Cu electrodissolution.
3.2.2. Effect of rotation rate on oscillation waveform for relaxation

oscillators

The Cu electrodissolution system also exhibits relaxation type
oscillations at large series resistance R and at circuit potentials
further away from the Hopf bifurcation points. Relaxation oscilla-
tions are shown in Fig. 7 for rotation rates d¼1300, 1400, 1500,
and 1600 rpm. At the applied circuit potential (200 mV) oscilla-
tions do not occur below 1300 rpm and above 1600 rpm. (Note
that in contrast to oscillations in the Hopf region, we compare the
behavior at fixed circuit potential instead of the Hopf potential.)



Fig. 5. Experiments: smooth periodic current oscillations close to Hopf bifurcation (top) and determination of chemical time-scale using step chronoamperometry (bottom)

in copper electrodissolution at rotation rate d¼1000 rpm and T¼10 1C. (a) Time series of current oscillations with frequency of o¼2.545 Hz, R¼77 O, V¼201 mV;

(b) potential step response with small series resistance (R¼17 O). At t¼0 the circuit potential was changed from V¼�28.5 to �54 mV; the latter corresponds to the same

Hopf potential (eH¼�130 mV) as shown in panel b. The final current if¼4.29 mA; and (c) semilogarithmic plot for the exponential decay shown in panel b. The slope of the

fitted dashed line is �0.85 1/s.

Fig. 6. Experiments: effects of rotation rate on mean current, required resistance, and frequency for oscillations that occur close to Hopf bifurcation point at fixed Hopf

potential eH¼�48 mV70.5 mV. T¼�5 1C. (a) Nearly square root dependence of mean current on rotation rate. Inset: ln–ln plot giving slope 0.59; (b) nearly inverse

square root dependence of required resistance on rotation rate. Inset: ln–ln plot giving slope �0.45; (c) theoretically predicted linear relationship between o2R and d0.5.

Dashed line: linear fit. Inset: ln–ln plot giving slope 0.95; and (d) square root dependence of frequency on rotation rate. Inset: ln–ln plot giving slope 0.47.
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The oscillation waveforms are characterized by low and high
current states (where the variations are slow) and quick transi-
tions (jumps) between them. Careful inspection of the waveforms
in Fig. 8a indicates that similar to the numerical findings the
maxima, minima, and the two transition points of the oscillations
do not depend on the rotation rate. The mean current, however,
increases with increase of rotation rate and follows the Levich
equation as /iSpd0:59. The mean current level increase is
established by keeping the maxima, minima, and the transition
points of the oscillations at constant level: at low rotation rate
(Fig. 7a), the current stays in the low current state for longer
period while at large rotation rate (Fig. 7d) the current stays in the
higher current state for longer period.

As it was pointed out in Section 3.1.3, the independence of the
oscillation minima and maxima and the transition points with
rotation rate is an indication that rotation rate does not affect the
nullcline structure of the fast variable. The relatively simple
ig. 7. Experiments: relaxation current oscillations at different rotation rates at

¼150 O and V¼0.200 V. (a) d¼1300 rpm; (b) d¼1400 rpm; (c) d¼1500 rpm;

nd (d) d¼1600 rpm. T¼5 1C.

Fig. 8. Experiments: changes of characteristics of relaxation oscillations with increase in

d¼1300 rpm; thick dashed line: d¼1400 rpm; thin solid line: d¼1500 rpm; and thin da

lower transitions for the waveforms and (b) square root dependence of mean current on

same as in Fig. 7.)
experimental test with effect of rotation rate on waveform of
relaxation oscillators thus could help elucidate the structure of
the ordinary differential equations governing dynamical behavior
of the electrochemical oscillatory system.
4. Discussion

The dynamical features of an electrochemical oscillatory sys-
tem, Cu dissolution in phosphoric acid was investigated in two
parameter regions that gave rise to smooth oscillations close to
Hopf bifurcation and relaxation oscillations.

Close to Hopf-bifurcation, we showed by theoretical analysis,
numerical simulations, and experiments that the frequency
increases with rotation rate, and an approximate square root
relationship op

ffiffiffi
d
p

was observed. The results further confirm the
applicability of the frequency formula (Kiss et al., 2009b) and
various scaling relationships (Kiss et al., 2009a) that govern the
dynamical features of negative differential resistance electroche-
mical oscillators.

We have developed a simple potential step chrohoampero-
metric technique with which the chemical time-scale of the
electrochemical reaction system can be determined for the
oscillatory behavior. This time-scale was shown to be accurate
in predicting the approximate frequency of the oscillations
provided that the electrical time-scale is known. A simple
experiment in the non-oscillatory region thus have predictive
power on dynamical features of oscillatory reaction. The experi-
ments also further confirm the benefits of studying the dynamical
features of electrochemical oscillatory systems close to Hopf
bifurcation studied under the same electrode potential instead
of the more common circuit potential. The presented scaling laws
are recovered only under the same Hopf potential which elim-
inates the potential dependence of electrochemical rate constant.

In parameter region where relaxation oscillations occur, we
found that the waveform properties (maximum, minimum, and
transition points) did not depend on rotation rate. Our analysis
indicated that the rotation rate did not affect the nullcline of the
fast variable (electrode potential) in the system; because oscilla-
tions take place on the stable branches of the nullclines, the shape
of the limit-cycle in the state space does not change with rotation
rate. Although nullcline analysis has been a common technique
for analysis of chemical (Scott, 1994) and electrochemical (Koper,
1996; Krischer, 1999; Toni et al., 1998) oscillators, usually the
technique is used for interpretation of number/stability of steady-
states and existence of limit cycles. Our results indicate that the
rotation rate. (a) Oscillation waveforms at different rotation rates: thick solid line:

shed line: d¼1600 rpm. The triangle and diamond symbols indicate the upper and

rotation rate. Inset: ln–ln plot giving slope 0.50. (Experimental conditions are the
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analysis of the shape of relaxation oscillators could be a simple
technique to explore the mathematical structure of the governing
ordinary differential equations, e.g., finding out the dependency of
ordinary differential equation of the fast variable on parameters.
In the studied electrochemical model, similar invariant properties
would be expected for the effect on waveform of bulk concentra-
tions (c0) and diffusion coefficients (D) of electroactive species. At
the present stage of the theory of electrochemical oscillations
(Koper, 1996; Krischer, 1999), this information perhaps seems
trivial, however, for novel oscillatory systems parametric studies
on waveform of relaxation oscillators could provide decisive
experimental data for differentiating suitable oscillatory
mechanisms.

In classical electrochemical systems related to steady states of
stable electrochemical cells, the Levich equation (Bard and
Faulkner, 1980) is applied the describe the mass-transport limited
current which is proportional to the square root of rotation rates,
ip

ffiffiffi
d
p

. In our experiments with smooth and relaxation oscillation,
we have approximately recovered this equation for the mean
current of the oscillations. Because in the experiments, the
oscillations occur close to the mass-transfer limited region, the
relationship is not unexpected for the smooth oscillations that
have small, harmonic waveform. However, for the large ampli-
tude current oscillations in the relaxation region we also con-
firmed the dependency, which cannot be easily interpreted,
especially, considering that the amplitude of the oscillation
remains constant. With the smooth oscillators close to the Hopf
bifurcation we found that not only the mean current, but the
frequency as well scales with the square root of the rotation rate
op

ffiffiffi
d
p

. We note that this square root dependence is not a direct
consequence of the Levich equation but comes from the unique
role of the mass transfer mechanism in the generation of electro-
chemical oscillations.

We have tested the prediction of a simple negative differential
resistance model using Cu dissolution system. The generality of
the findings are thus constrained by the quite simple dynamical
features of the model. Nonetheless, there are other experimental
systems where Eqs. (1) and (2) can describe the dynamics; this
includes reduction of cations and anions (Koper, 1996; Koper and
Sluyters, 1993b), e.g., indium(III) reduction in the presence of
thiocyanate. Many electrochemical models need (at least) three
variables to describe the dynamics; for example, in iron electro-
dissolution surface hydrogen and metal ion concentrations should
be considered in addition to the electrode potential (Koper and
Sluyters, 1993a; Organ et al., 2003). The test of the model
predictions could be a particular challenge in this system. In
many electrochemical systems the negative differential resistance
is hidden (Koper, 1996; Koper and Sluyters, 1994; Krischer,
1999); in these examples the frequency formula should be
modified (Kiss et al., 2009b) and thus further work is required
to predict rotation rate dependencies.

We have utilized two major simplifying concepts that were
found to have predictive power for decoding the dynamical
features of the electrochemical system. First, we investigated
the behavior of the system only close to Hopf bifurcation point.
This application of the principle of critical simplification
(Yablonsky et al., 2003) allowed us to study the frequency of
the oscillations in a simple manner. The frequency of the oscilla-
tion is defined by time-scales of the system, therefore, the study
gave information on how the different electrical and chemical
time-scales interact to produce the value of the frequency. In
previous example, PCS was applied to saddle-node bifurcation to
describe the rate of the reaction. (Yablonsky et al., 2003) Because
in electrochemical systems saddle-node bifurcations are also
common (Koper, 1996; Krischer, 1999) and detailed information
have been reported for various systems (Jurczakowski and Orlik,
2007; Koper et al., 1992; Lev et al., 1989; Malkhandi et al., 2009),
it is likely the PCS has wider application in electrochemical, and
possibly in other chemical systems as well. The second simplify-
ing technique that we applied for relaxation oscillators was the
nullcline technique. A powerful expansion of the nullcline tech-
nique utilizes manifolds (Gorban and Karlin, 2005) that represent
slow, strongly interdependent variation of variables. Extensive
use of the manifolds approach could greatly enhance decoding the
dynamics of chemical complexity in various experimental sys-
tems; our work is a step toward such experimental application. To
take advantage of different manifold theories, the concurrent
measurement of many chemical species would be required for
the system. In traditional electrochemical experiments the cur-
rents are measured, however, in the past two decades significant
progress has been made in measuring surface coverages/concen-
trations, e.g., with in-situ IR spectroscopy (Morschl et al., 2008;
Samjeske and Osawa, 2005) or electrochemical mass spectro-
metry (Seidel et al., 2010). The widespread application of these
experimental techniques along with manifold description of
complex system is expected to greatly enhance our understand-
ing of dynamics of chemical reaction processes.
5. Conclusions

The effect of mass-transfer conditions through variations of
rotation rate of a disk electrode on the oscillatory dynamics of a
negative-differential resistance electrochemical system was stu-
died in numerical simulations and experiments. For oscillations
close to Hopf bifurcation the frequency depends approximately on
the square root of the rotation rate. The dependency was inter-
preted in a theoretical framework using bifurcation analysis and the
principle of critical simplification. For relaxation oscillations, the
amplitude and the transition points between the high and low
current states did not depend on the rotation rate. The parametric
dependency of waveform of relaxation oscillators can thus be
applied to classify system parameters on the their role of the
dynamics of the fast subsystem. The results could find applications
for the growing field of design of chemical (De Kepper et al., 1981;
Kurin-Csörgei et al., 2005, 2006; Lagzi et al., 2010) and biological
(Elowitz and Leibler, 2000) oscillators. For example, the frequency
of oscillator could be tuned in a predictive manner by changing
mass transfer conditions. Batch pH oscillators were recently
obtained by optimization of mass transfer conditions using a layer
of silica gel (Poros et al., 2011). Relaxation oscillators could be good
candidates for design of oscillations whose amplitude should not
depend on parameters that do not affect the dynamics of the fast
subsystem. Biological oscillations can be designed with genetic
circuits. (Danino et al., 2010; Elowitz and Leibler, 2000) Mass
transfer between the cytosol, cell nucleus, and intercellular media
could affect the oscillator properties (Danino et al., 2010; Leloup,
2004); the exploration of the mass transfer affects in biological
oscillator system, with techniques similar to those applied in our
study, could aid the design of biological oscillators with proper
amplitude and frequency characteristics.
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