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Abstract
We demonstrate how strong-field multiphoton transitions between dynamically shifted atomic
levels can be traced in the energy spectra of emitted photoelectrons. Applying an ultrafast and
intense laser pulse, two-photon Rabi oscillations are induced between two bound states of an
atom. A third photon from the same pulse directly ionizes the atom, thus the emitted
photoelectrons coherently probe the underlying dynamics. As the instantaneous energy of
photoelectrons follows the pulse intensity envelope, modulated by the ac Stark shifts, electrons
emitted with the same energy but at different times—at the rising and falling edge of the
pulse—will interfere leading to pronounced dynamic interference pattern in the spectra. We
investigate this phenomenon both numerically and analytically by developing a minimal
three-state model that incorporates two-photon coupling and dynamically shifted atomic
levels. On the example of atomic lithium (2s →→ 4s → continuum) we show how the
individual ac Stark shifts and the two-photon Rabi frequency are reflected through the
asymmetry, shifting and splitting of the interference structure of the computed photopeaks.

Keywords: two-photon transition, strong-field ionization, dynamic interference, Stark shift

(Some figures may appear in colour only in the online journal)

1. Introduction

Coherent control of light–matter interactions induced by ultra-
fast and intense laser pulses has attracted much interest over
the past decades. Several quantum control strategies have been
proposed to steer the evolution of atomic and molecular pro-
cesses along desired pathways including selective population
transfer, ionization or photodissociation [1–5]. The stimulated
Raman adiabatic passage (STIRAP) and related techniques
were found very robust for efficient population transfer when
the transitions are induced by a single photon.

It is well known, however, that in the strong-field regime
where multiphoton transitions occur, the atomic and molecular
levels are subject to ac Stark shifts which significantly mod-
ify the underlying physics [6, 7]. Numerous experimental and
theoretical works have shown that despite the movement of the
atomic levels, efficient population transfer is possible between

∗ Author to whom any correspondence should be addressed.

two electronic states upon absorption of multiple photons
from the same pulse [8–21]. In the majority of these works,
two-photon transitions are considered in alkali metals and a
proper modulation of the phase or shape of the laser pulse is
applied to compensate the relative dynamic Stark shift (DSS)
of interest. Although, transform limited (TL) pulses set to exact
two-photon resonance are not optimal for efficient population
transfer [8], by a proper blue or red detuning (depending on
the sign of the relative DSS) one can achieve notable excitation
even with TL pulses [11, 20].

Multiphoton excitation and subsequent ionization of atomic
systems in the optical regime have been widely studied already
from the eighty’s [22–29]. The oscillatory patterns observed
in the photoelectron spectra were attributed to Stark shifted
bound state multiphoton transient resonances that give rise
to interference of electron amplitudes generated on the rising
and falling edge of the pulse. The first unambiguous obser-
vation of the interference of photoelectrons emitted at differ-
ent times within the same pulse was made by Jones [28] who
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used unfocused beams to avoid the spatial intensity variation
effects of the laser which would otherwise make the process
unobservable.

A very transparent illustration of the emergence of interfer-
ence patterns found in sequential two-photon ionization spec-
tra was given in reference [30] and later confirmed by direct
wave packet propagations [31]. The resonantly coupled bound
states subjected to a time-dependent coupling by the laser repel
each other, and their time-dependent energies follow the pulse
envelope. During the interaction with the laser, electrons emit-
ted at the rising edge of the pulse have the same energy as those
emitted at the falling edge. As a consequence, photoelectrons
ejected with the same energy but with a time delay give rise to
pronounced interference pattern in the spectrum. This dynamic
interference of photoelectrons is a general phenomenon in
strong-field processes as long as short laser pulses of high car-
rier frequency are considered and particles are emitted during
the action of the pulse [30].

Originally, dynamic interference was demonstrated in the
direct ionization of atomic systems exposed to high-intensity
lasers in the XUV regime [32–40]. Especially, atomic hydro-
gen and helium were investigated in detail and it was shown
that due to the strong ac Stark effect in the continuum, single
peaks are replaced by multi-peak pattern in the spectrum [34].
Later, the ionization of hydrogen was revisited more accu-
rately, and the essential conditions for dynamic interference
have been specified [38]. After all, it became clear that ground
state atoms exhibit dynamic interference, the onset of which
can be considered as a signature of atomic stabilization [39].
Over the past years, further theoretical works have demon-
strated the importance of dynamic interference from different
perspectives [41–47], though an experimental realization is yet
to be presented.

Dynamic interference in the multiphoton optical regime
(ω < Ip) is different from that found in direct ionization by
intense high frequency lasers (ω > Ip). In the former case, sev-
eral high-lying excited states may be populated during the ion-
ization process, furthermore these states might induce notable
ac Stark shifts. As the ionization is rather efficient in that
region [48], Rabi oscillations between bound states can be
depleted and the interference pattern might wash out [38]. The
application of longer pulses can help overcome these difficul-
ties. Owing to the narrow bandwidth of such pulses, ionization
is possible through selectively populated intermediate resonant
states. Furthermore, the larger pulse duration allows one to use
lower intensities, with which the peak values of the ac Stark
shifts can be limited such that the interference pattern remain
observable in the spectrum.

In the present work, we investigate such phenomena by con-
sidering the 2 + 1 photon resonance-enhanced multiphoton
ionization of an atom in the strong-field regime, where DSSs
start to play a role. Two-photon Rabi oscillations induced
between two bound states of the atom are probed by a third
photon leading to the emission of an electron. By develop-
ing a minimal three-state model that includes ac Stark shifts
and multiphoton coupling, we numerically calculate the spec-
trum which exhibits multi-peak dynamic interference pattern.
After deriving an analytical expression for the spectrum which

Figure 1. Energy level scheme of atomic lithium. Shown is the
2 + 1 photon resonance-enhanced ionization of Li from the 2s initial
state (|I〉) to the εp final continuum state (|ε〉) mediated by the 4s
resonant state (|R〉).

nicely reproduces the numerical results, we reveal the impact
of the individual Stark shifts, the two-photon Rabi frequency
and the laser detuning on the asymmetry, splitting and shifting
of the obtained spectra. For our analysis, we consider atomic
lithium which has been intensively studied recently [49–57].
Our scheme in this work involves the 2s →→ 4s → continuum
pathway for Li, but similar situations occur e.g. in other alkali
metals.

2. Theory

We start by introducing the theoretical framework for the
strong-field 2 + 1 photon resonance-enhanced ionization pro-
cess studied in this work. We consider atomic lithium as a con-
crete example initially in the 2s ground state (|I〉). Applying a
coherent intense laser pulse, the system is excited by two pho-
tons to the 4s resonant state (|R〉) and then ionized by a single
photon (see figure 1). The field-free atom is represented by the
Ĥ0 Hamiltonian and its corresponding | j〉 eigenstates and ω j

eigenenergies (� = 1), where the j index runs over the bound
and continuum states. The interaction of the atom with the
laser pulse is treated in the dipole approximation, that is V̂(t) =
−�μ�E(t) where �μ is the transition dipole vector and �E(t) is the
linearly polarized electric field. Throughout this work, Gaus-
sian laser pulses of the form E(t) = E0g(t) cos(ωt + γ(t)) are
applied, where E0 is the electric field amplitude, ω is the cen-
tral angular frequency, and g(t) = e−t2/2τ2

is the envelope func-
tion with τ being the pulse duration that is closely related to the
full width at half maximum (FWHM) FWHM = 2τ

√
ln 2. For

simplicity, the γ(t) phase of the field is kept constant (γ = 0)
unless otherwise stated.

In the total time-dependent wave function of the sys-
tem both the essential and nonessential states are explicitly
included, and it reads [58]

Ψ(t) = cI(t)|I〉e−iωI t + cR(t)|R〉e−iωRt

+

∫
m

∑
cm(t)|m〉e−iωmt +

∫
cε(t)|ε〉e−iωεtdωε.

(1)
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In equation (1), the initial and resonant states (2s and 4s in case
of Li) are denoted as |I〉 and |R〉, respectively, while the final
continuum states which are populated after the ionization pro-
cess, are labeled by |ε〉. The nonessential |m〉 states are dipole
coupled to |I〉 and |R〉 but as they are far from resonance, their
population is negligible during the atom–field interaction. The
impact of these states on the studied two-photon transition is
crucial as they give rise to the DSSs of the 2s and 4s levels to
be discussed below. We note here that both the m- and ε-state
manifold consists of p states (l = 1) in the present case due to
the selection rules for the angular momentum.

After inserting equation (1) into the time-dependent
Schrödinger-equation iΨ̇ = [Ĥ0 + V̂(t)]Ψ we arrive at the full
set of coupled differential equations for the c j(t) complex
amplitudes

iċ j(t) =
∫

k

∑
ck(t) e−iωk jtV jk(t), (2)

where ωk j = ωk − ω j ( j, k = I, R, m, ε) and the light–matter
interaction term is written as V jk(t) = −E(t)μ jk with μ jk =
〈 j|̂z|k〉 being the transition dipole moment (TDM) matrix
element between the corresponding eigenstates of the atom.
Equation (2) can be substantially simplified by invoking that
the μIR, μmm′ and μmε TDMs are inherently zero, furthermore
continuum–continuum transitions are ignored as we focus on
the first photopeak in this study. After applying these con-
siderations and also exploiting that direct ionization of the
ground state is negligible for the considered photon energies,
equation (2) is written as

iċI(t) =
∫

m

∑
cm(t) eiωImtVIm(t) (3a)

iċR(t) =
∫

m

∑
cm(t) eiωRmtVRm(t) +

∫
cε(t) eiωRεtVRε(t)dωε

(3b)

iċm(t) = cI(t) e−iωImtVmI(t) + cR(t) e−iωRmtVmR(t) (3c)

iċε(t) = cR(t) e−iωRεtVεR(t). (3d)

The last term in equation (3b) can be calculated explicitly by
invoking the rotating wave approximation (RWA) and the local
approximation [59]∫

cε(t) eiωRεtVRε(t)dωε = − i
2
Γ(t)cR(t) (4)

where Γ(t) = Γ0g2(t) with Γ0 = 2π|μRεE0/2|2 being the total
rate for the ionization of the |R〉 resonant state. The right-hand
side of equation (3d) can be also simplified using the RWA,

cR(t) e−iωRεtVεR(t) = cR(t)Ω1(t) eiδt, (5)

where Ω1(t) = − 1
2μεRE0g(t) = Ω0

1 · g(t) and δ = ωεR − ω are
the one-photon Rabi frequency and detuning, respectively.

To uncover the overall impact of the nonessential m-state
manifold, we turn to equation (3c). As the offresonant inter-
mediate states rapidly oscillate, the time evolution of the
cm(t) amplitudes can be obtained by adiabatic elimination
[11]. After integrating equation (3c) by parts and omitting

small terms, we arrive at an explicit expression for the cm(t)
amplitudes

cm(t) =
μmI

2
cI(t)E0g(t)

[
e−i(ωIm+ω)t

ωmI − ω
+

e−i(ωIm−ω)t

ωmI + ω

]
+

μmR

2
cR(t)E0g(t)

[
e−i(ωRm+ω)t

ωmR − ω
+

e−i(ωRm−ω)t

ωmR + ω

] (6)

which is valid as long as the detuning of the |m〉 states is
large compared to the pulse bandwidth, the two-photon detun-
ing and the Stark shifts of interest. Inserting equation (6) into
equations (3a) and (3b), and applying the two-photon RWA,
that is dropping rapidly oscillating terms again, the following
three-state equation is obtained

iċI(t) = SI(t)cI(t) +Ω†
2(t) e−iΔtcR(t), (7a)

iċR(t) = Ω2(t) eiΔtcI(t) +

[
SR(t) − i

2
Γ(t)

]
cR(t), (7b)

iċε(t) = cR(t)Ω1(t) eiδt, (7c)

whereΔ = ωR − ωI − 2ω is the two-photon detuning,Ω2(t) is
the two-photon Rabi frequency (assumed real)

Ω2(t) = −
∫

m

∑ μRm · μmI

4
E2

0g2(t)
ωmI − ω

= Ω0
2 · g2(t) (8)

and Sk(t) is the DSS of the kth level (k = I, R) originating from
the nonessential m-state manifold

Sk(t) = −
∫

m

∑ |μkm|2 · E2
0g2(t)

2
ωmk

ω2
mk − ω2

= S0
k · g2(t). (9)

We note here that both Ω2(t) and Sk(t) follow the g2(t) inten-
sity profile of the pulse in accordance with previous studies
[11, 15]. In equations (7a)–(7c), it is possible to eliminate the
oscillating factors e±iΔt and eiδt by redefining the amplitudes
as cR(t) → cR(t)eiΔt and cε(t) → cε(t)ei(Δ+δ)t. After applying
these changes and incorporating the Up(t) = E2

0 · g2(t)/4ω2

ponderomotive shift of the continuum, we arrive at our final
equation

i

⎛⎝ ċI(t)
ċR(t)
ċε(t)

⎞⎠ =

⎛⎜⎝ SI(t) Ω†
2(t) 0

Ω2(t) Δ+ SR(t) − i
2
Γ(t) 0

0 Ω1(t) Δ+ δ + Up(t)

⎞⎟⎠

×

⎛⎝cI(t)
cR(t)
cε(t)

⎞⎠ (10)

Equation (10) describes the underlying physics investigated
in this work. The strongly coupled |I〉 and |R〉 states undergo
two-photon Rabi floppings governed by Ω2(t), meanwhile the
energy levels follow the intensity profile of the pulse through
the SI(t) and SR(t) Stark shifts. This two-photon Rabi dynamics
is probed by a third photon from the same pulse leading to the
emission of an electron. The leakage of the population of the
|R〉 resonant state is described by the − i

2Γ(t) imaginary term,
while the single-photon coupling to the continuum is dictated
byΩ1(t). Inclusion of the time-dependentUp(t) ponderomotive

3
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shift of the continuum levels is essential as it approximately
gives rise to the Stark shifts in the continuum [38]. Up(t) is
expected to cause additional shift of the spectral peaks by rais-
ing the Ip ionization potential [23, 60, 61], and also to affect
the interference of electrons emitted at different times.

In the next section, equation (10) will be used for the
numerical investigation of the (2 + 1) photon ionization of
atomic lithium. After applying analytical considerations to
equation (10) a direct link between the computed spectra and
the Ω2(t), Sk(t), Δ and Up(t) quantities will be demonstrated.

3. Results

In what follows, we investigate the strong-field multiphoton
ionization of ground state Li atoms induced by an intense
short laser pulse in the optical regime. The time evolution of
the laser-driven system is obtained by solving equation (10)
which describes the 2 + 1 photon resonance-enhanced ioniza-
tion process under consideration. To calculate the necessary
frequency dependent quantities in equation (10), such as the
SI(t) and SR(t) energy shifts, the Ω1(t) and Ω2(t) Rabi fre-
quencies and the Γ(t) total rate for the ionization, the energy
levels and TDMs of Li have been evaluated. The bound state
energies and wave functions have been obtained by the direct
diagonalization of the single-active-electron Hamiltonian of
Li [49] discretized on a finite-element discrete-variable rep-
resentation grid [62] while those of the continuum states
with the Numerov method, and an excellent agreement has
been found with previous results in terms of energy lev-
els and TDMs [63, 64]. The bare energy difference between
the 2s and 4s states is found ωRI = 0.159 44 a.u. ≈ 4.339
eV while the peak values for the dynamical quantities of
interest are obtained as S0

I = 0.0193 eV, S0
R = 0.0077 eV, U0

p

= 0.0071 eV, Ω0
1 = −0.0151 eV, Ω0

2 = −0.0078 eV and Γ0 =
0.0005 eV forΔ = 0 (i.e.ω = ωRI/2) and a typical laser inten-
sity of I0 = 2.331 × 1011 W cm−2 (E0 = 0.002 577 a.u.). We
note that the above values of the Stark shifts are in line with
highly accurate ab initio data both for the 2s [65] and 4s
states [66].

The numerical results of the time propagations obtained via
equation (10) are shown in figure 2. Here the applied Gaus-
sian laser pulse (FWHM = 1000 fs) is set to bare two-photon
resonance for the 2s–4s transition (Δ = 0 → ω = ωRI/2 =
2.169 eV) and the laser intensity is varied such that sev-
eral Rabi oscillations are induced meanwhile the total ion-
ization remains far from saturation. As seen in the final
populations (pk = |ck(t →∞)|2) in figure 2(a), the system
undergoes damped Rabi oscillations and completes more and
more Rabi cycles as the laser intensity is increased, further-
more the ionization probability does not exceed 25% for the
highest considered intensity. The corresponding photoelec-
tron spectra calculated as σ(ωε) = |cε(t →∞)|2 is presented
in figure 2(b) by a color map. Several interesting observa-
tions can be made in the intensity dependence of the spectrum.
Upon increasing laser intensity, the position of the photopeak
is shifted to higher energies relative to its nominal position in
the weak-field limit (ωε0 = ωI + 3ω = 1.117 eV—horizontal
dashed line in figure 2(b)). Furthermore, the photopeak gets

Figure 2. Resonance-enhanced 2 + 1 photon ionization of atomic
Li induced by a Gaussian laser pulse (FWHM = 1000 fs) set to bare
two-photon resonance for the 2s →→ 4s transition (Δ = 0). (a)
Final populations of the resonantly coupled 2s and 4s states as well
as the total ionization probability are shown as a function of the
laser intensity. Vertical dashed lines indicate the intensities at which
the system completes integer number of Rabi cycles.
(b) Photoelectron spectra computed for different laser intensities.
Splitting of the main photopeak for increasing intensities is caused
by the strong coupling with the laser, while the appearance of
multi-peak structure is the result of dynamic interference. Owing to
the atomic level Stark shifts, the spectrum is shifted from its
nominal position in the weak-field limit (horizontal dashed line) and
becomes asymmetric (see text for details). The presented results are
obtained solving equation (10).

splitted and exhibits richer and richer multi-peak pattern as
the laser-atom coupling is increased. Taking cuts at selected
intensities in figure 2(b), it is seen that the main peaks are
asymmetric with respect to their center and the number of sub-
peaks within each photopeak directly reflects the number of
completed Rabi cycles. All these observations are attributed to
dynamic interference of photoelectrons emitted with the same
energy but at different times in the presence of dynamically
shifted atomic levels.

In order to gain insight into the origin of the asymmetry,
shifting and splitting of the interference pattern of the photo-
peaks, we would like to calculate analytically the time evolu-
tion of cε(t) and then the spectrum as σ(ωε) = |cε(t →∞)|2.
To do so, below we consider the picture of decoupled reso-
nances which allows one to calculate the cε(t) amplitudes [30].
We recall that the near-resonance transition between the |I〉 and
|R〉 states in equation (10) is dictated by the 2 × 2 Hamiltonian

Ĥ2ph(t) =

(
SI(t) Ω†

2(t)

Ω2(t) Δ+ SR(t) − i
2
Γ(t)

)
, (11)

4
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where Δ can be tuned such that the δS(t) = SR(t) − SI(t) rel-
ative DSS is roughly compensated during the action of the
pulse (with chirped pulses δS(t) can be compensated at each
moment [12]).

Owing to the − i
2Γ(t) lossy term, equation (11) gives rise

to two decoupled resonances (|+〉 and |−〉), which are super-
positions of the field-free atomic states (|I〉 and |R〉). Assum-
ing that ionization is not dominant, i.e. Ω2(t) 
 1

2Γ(t), and
after introducing the sum of the individual Stark shifts, Σ(t) =
SI(t) + SR(t), the time-dependent energies and wave functions
of the emerging resonances obtained by diagonalizing Ĥ2ph(t)
are written as

E± � Σ(t) +Δ

2
±

√
Ω2

2(t) +

(
δS(t) +Δ

2

)2

− i
4
Γ(t)

(12a)

|−〉 � 1√
1 +

(
Λ−(t)
Ω2(t)

)2

[
|I〉+

(
Λ−(t)
Ω2(t)

)
|R〉

]
(12b)

|+〉 � 1√
1 +

(
Λ+(t)
Ω2(t)

)2

[
|I〉+

(
Λ+(t)
Ω2(t)

)
|R〉

]
(12c)

Λ±(t) =
δS(t) +Δ

2
±

√
Ω2

2(t) +

(
δS(t) +Δ

2

)2

. (12d)

We see that, because of the (Σ(t) +Δ) term in equation (12a)
the energy splitting of the resonances is not symmet-
ric with respect to zero, and because of (δS(t) +Δ) in
equations (12b)–(12d) the resulting wave functions are not
equally weighted superpositions of the bare atomic states.
Clearly, when the Stark shifts are not relevant and the field
is set to exact resonance (Δ = 0), the arising resonance states
are equally weighted superpositions of |I〉 and |R〉 with a sym-
metric energy splitting. Here, we focus on the more general
case, when the dynamical shifts of atomic levels are relevant
and non-zero detuning is applied to maintain resonance (or
near-resonance) condition.

To proceed further, we first write the time-dependent ampli-
tudes for the resonance states using the initial condition
c±(t →−∞) = 1/

√
2 and the expression for the energies

(equation (12a))

c±(t) =
1√
2

e−iR±(t)+I(t), (13)

where R±(t) =
∫ t
−∞ Re{E±(t′)}dt′ and I(t) =∫ t

−∞ Im{E±(t′)}dt′ are integrals of the real and imagi-
nary parts of the energies, respectively. Next we express |R〉
from equations (12b) and (12c) and substitute equation (13)
to arrive at the amplitude for the intermediate state

cR(t) =
1√
2

(
Ω2(t)

Λ+ − Λ−

)⎧⎨⎩
√

1 +

(
Λ+(t)
Ω2(t)

)2

e−iR+(t)+I(t)

−

√
1 +

(
Λ−(t)
Ω2(t)

)2

e−iR−(t)+I(t)

⎫⎬⎭ .

(14)
Using equation (14), it is possible to calculate cε(t) (see
e.g. reference [59]) and then the spectrum as σ(ωε) =
|cε(t →∞)|2. By incorporating Up(t) via its integral u(t) =∫ t
−∞ Up(t′)dt′ we finally obtain for the spectrum

σ(ωε) =
1
2

∣∣∣∣∫ ∞

−∞

(
Ω1(t)Ω2(t)

Λ+(t) − Λ−(t)

)
eI(t)

⎧⎨⎩
√

1 +

(
Λ+(t)
Ω2(t)

)2

× ei[(Δ+δ)t−R+(t)+u(t)] −

√
1 +

(
Λ−(t)
Ω2(t)

)2

× ei[(Δ+δ)t−R−(t)+u(t)]
}

dt|2 (15)

where Δ+ δ = ωεI − 3ω is nothing but the total detuning
relative to the ωε0 = ωI + 3ω center of the spectrum.

σ(ωε) gives us the energy distribution of photoelectrons
emitted after strong-field two-photon transition in the presence
of dynamically shifted atomic levels. The formula is also valid
when the field is not exactly in resonance. We note here that
in case of vanishing Stark shifts and exact resonance (Δ = 0),
equation (15) is greatly simplified and the resulting spectrum
is fully equivalent with that presented in reference [30] for
resonant 1 + 1 photon ionization processes. It is possible to
further simplify equation (15) by invoking the stationary phase
approximation [35] that is collecting terms that give the domi-
nant contributions to σ(ωε). However, we would like to stop at
this point and utilize equation (15) as it stands to find rela-
tion between the main features of the spectra and the most
important quantities that characterize the underlying strong-
field transition, namely the Stark shifts and the two-photon
Rabi frequency.

To demonstrate the validity of σ(ωε), the photoelectron
spectra calculated via equation (15) are presented in figure 3
by red lines. Here the same intensities are applied as shown by
the vertical lines in figure 2 and for comparison the numerical
results from equation (10) are also included either with Up(t)
or without Up(t). Clearly, the most important properties of the
spectra obtained with Up(t)—such as the asymmetry, shifting,
splitting and the multi-peak pattern—are nicely reproduced by
the formula computed in the picture of decoupled resonances.
Importantly, the spectra computed with the Up(t) ponderomo-
tive shift of the continuum levels exhibit additional shifting
and a modified interference pattern.

Let us further inspect the general formula in equation (15).
As was shown above, σ(ωε) originates from the decoupled
resonances |+〉 and |−〉, which are described by the first and
second terms in the braces, respectively. The energies of these
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Figure 3. Photoelectron spectra of Li after the strong-field 2s–4s
transition, computed numerically via equation (10) either with Up(t)
(black lines with circles) or without Up(t) (blue lines) and given by
the formula in equation (15) (red lines). The applied laser
parameters are the same as in figure 2: FWHM = 1000 fs,
ω = 2.169 eV (Δ = 0), and the intensities are chosen such that the
system completes integer number of Rabi cycles (see also the
vertical lines in figure 2). Note that the most important features of
the spectra obtained with Up(t) -asymmetry, shifting, splitting and
the multi-peak structure that is caused by dynamic interference—are
nicely reproduced by the analytical results obtained in the picture of
decoupled resonances. Importantly, the Up(t) ponderomotive shift of
the continuum causes additional shift of the spectrum and modifies
the interference pattern. For transparency, the individual spectra are
vertically shifted apart from each other. The vertical dashed line
indicates the nominal position of the spectrum.

resonances vary according to equation (12a) and are directly
associated with the two sides of the spectrum (E−(t) with the
lower-, and E+(t) with the higher energy side). Owing to the
(δS(t) +Δ) dependence of Λ±(t), the exponentials have dif-
ferent prefactors. Consequently, the two sides of the photo-
peak are expected to differ in height leading to asymmetry
in the spectrum. Furthermore, the total phases in the expo-
nential factors,Φ±(t) = (Δ+ δ)t −R±(t) + u(t) are not sym-
metric due to the (Σ(t) +Δ) term in R±(t), which suggests
additional asymmetry and a shifting of the center of the spec-
trum. Looking at the time-dependent energy expressions of
the resonances in equation (12a), we see that both |−〉 and
|+〉 experience the same loss of − i

4Γ(t), furthermore the

Figure 4. Strong-field ionization of Li induced by a two-photon
resonant (Δ = 0) laser pulse of I0 = 2.331 × 1011 W cm−2 peak
intensity and FWHM = 1000 fs duration. (a) The time-dependent
populations of the 2s (orange line), 4s (purple line) and all the
continuum states (cyan line) reveal that the system completes five
Rabi cycles, meanwhile the total ionization caused by a third photon
is below 25%. (b) The strong coupling of the 2s and 4s states caused
by the laser gives rise to two decoupled resonances, the energies of
which are given by equation (12a) and shown here by the red and
blue lines relative to the nominal position of the photopeak
ωε0 = ωI + 3ω shifted by the Up(t) ponderomotive energy. The
horizontal gray arrows symbolize electron amplitudes of particular
energies that are emitted at the rising and falling edge of the pulse
and cause the interference pattern in the spectrum shown on the
right side by the green line.

real parts of E−(t) and E+(t) follow the g2(t) pulse intensity
envelope below and above 1

2Σ(t) when Δ = 0. This is illus-
trated in figure 4(b) for the I0 = 2.331 × 1011 W cm−2 peak
intensity case. Here, the time-dependent energies of the emerg-
ing resonances are shown by the blue and red lines relative to
the ωε0 = ωI + 3ω nominal center of the photopeak shifted by
the Up(t) ponderomotive energy in the continuum. In this pic-
ture, the main features of the spectrum—shown by the green
line in figure 4(b)—are easily understood. As the pulse arrives,
the two resonances repel each other and the emitted electrons
will gain energy in a wide interval giving rise to the splitting
of the photopeak. After the pulse has reached its maximum
and expires, the ejected electrons will have the same energies
as those emitted at the rising edge of the pulse. Owing to the
temporal difference of the electron amplitudes generated at
the two sides of the pulse, pronounced interference pattern is
observed in the spectrum. The number of sub-peaks within the
main peak (in this case five) equals the number of Rabi cycles
accomplished by the system (see figure 4(a)).
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The degree of asymmetry, splitting and shifting of the cen-
ter of the photopeaks are directly related to the peak val-
ues of the resonance energies, E−(t = 0) and E+(t = 0) and
to Up(t = 0). As seen in figure 4(b), (i) the extent of split-
ting is linked to the difference of the peak resonance ener-
gies Re{E+(t = 0)} − Re{E−(t = 0)}; (ii) the shifting of the
photopeak center relative to ωε0 is connected to the sum of
the peak Stark shifts, 1

2Σ(t = 0) minus the peak ponderomo-
tive shift of the continuum levels, U0

p; (iii) while the asym-
metry is explained by the fact that the peak values of the
resonance energies shifted by U0

p (and also the curvature of
Re{E+(t)} − Up(t) and Re{E−(t)} − Up(t) at t = 0) differ in
magnitude, hence the energy distribution of emitted electrons
on the two sides of the main photopeak differs in general.

In the concrete example of Li, the sum of the 2s and 4s Stark
shifts is positive, thus the photopeak is shifted to larger ener-
gies relative to ωε0 − U0

p. Furthermore, as the energy of |−〉 is
lower in magnitude than that of |+〉, electrons ejected at the
lower energy side of the photopeak are distributed in a nar-
row energy window in contrast to those emitted on the higher
energy side. As a consequence, the lower energy side of the
spectrum is higher than the higher energy side (see figure 4).

4. Conclusions

We have investigated the 2 + 1 photon resonance-enhanced
strong-field ionization of an atom by developing a mini-
mal three-state model that incorporates ac Stark shifts and
multiphoton coupling. Based on the numerically obtained
(equation (10)) photoelectron spectra that are qualitatively
supported by the results of an analytical model presented
here (equation (15)), we could show that dynamic interfer-
ence of photoelectrons substantially modifies the spectrum
when the resonantly coupled atomic levels are subject to
dynamical shifts. On the example of Li, we have demon-
strated that the strong resonant coupling of the 2s and 4s states
induced by the laser gives rise to two decoupled resonances,
the time-dependent energies of which repel each other and
become responsible for the main features of the photopeaks
(see figure 4). The asymmetry and shifting of the spectra are
caused by the ac Stark shifts of the involved atomic levels,
while the multi-peak structure results from dynamic interfer-
ence of electron amplitudes generated at the rising and falling
sides of the laser pulse.

To interpret the origin of the spectral characteristics, the
picture of decoupled resonances was found very useful. The
analytically obtained energies of the emerging resonances
(equation (12a)) allows one to find relation between the main
features of the spectra and the individual Stark shifts as well
as the two-photon Rabi frequency. We have also shown that
the time-dependent ponderomotive shift of the continuum lev-
els not only shifts the position of the spectrum but modi-
fies the dynamic interference pattern as the electrons entering
the continuum at different times experience different energy
shifts. The spectral characteristics discussed in this paper are
general features in strong-field ionization processes where
dynamical energy level shifts become prominent and should
be observable in future experiments.
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[10] Präkelt A, Wollenhaupt M, Sarpe-Tudoran C and Baumert T

2004 Phys. Rev. A 70 063407
[11] Trallero-Herrero C, Cardoza D, Weinacht T C and Cohen J L

2005 Phys. Rev. A 71 013423
[12] Trallero-Herrero C, Cohen J L and Weinacht T C 2006 Phys.

Rev. Lett. 96 063603
[13] Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys.

Rev. A 75 031401
[14] Haas M et al 2006 Phys. Rev. A 73 052501
[15] Lee S, Lim J, Ahn J, Hakobyan V and Guérin S 2010 Phys. Rev.
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