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Heterostructured nanowires are of prime interest in nowadays technology such as field-effect transistors,
field emitters, batteries and solar cells. We consider their aging behavior and developed a model focusing
on reactive diffusion in core-shell nanowires. A complete set of analytical equations is presented that
takes into account thermodynamic driving forces, vacancy distribution, elastic stress and its plastic
relaxation. This complete description of the reactive diffusion can be used in finite element simulations
to investigate diffusion processes in various geometries. In order to show clearly the interplay between
the cylindrical geometry, the reactive diffusion and the stresses developing in the nanowire, we inves-
tigate the formation of an intermetallic reaction product in various core-shell geometries. Emphasis is
placed on showing how it is possible to control the kinetics of the reaction by applying an axial stress to
the nanowires.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In Ref. [1] we presented a complete set of analytical equations to
describe reactive diffusion in spherical core shell nanostructures.
The model takes into account elastic stress, its plastic relaxation, as
well as possible non-equilibrium vacancy densities. Furthermore,
thermodynamic driving forces are included to model the formation
of intermetallic (IM) product phases within an intermediate
composition range. Using this model, we studied the reaction in
spherical triple core-shell structures A/B/A and B/A/B, for which
Schmitz et al. [2] observed that the growth rate depends on the
stacking order. Comparison with the data of atom probe tomogra-
phy (APT) proved that significant deviations from the vacancy
equilibrium concentration develop over time which control sta-
bility and reaction rate of the nanometric diffusion couples.

In this paper, we will present a new set of analytical equations,
this time to describe reactive diffusion in a cylindrical core shell
nanostructure. The interest in the cylindrical geometry stems from
the ever growing importance of nanowires, nanowhiskers and
nanopillars in recent technologies as they are used in new gener-
ation of devices or prototypes in numerous fields: field-effect
transistors [3,4], battery electrodes [5,6], flexible solar cells … [7].
For such applications, homogeneous nanowires are not sufficient.
ussel).

lsevier Ltd. All rights reserved.
More elaborate structures, such as core-shell nanowires, are often
necessary. If the core shell structure is lost, for example upon
heating, the function also deteriorates. Consequently, knowledge
about reaction of layers and the developing-relaxing stress field is
indispensable to prevent this deterioration and to construct more
stable structures.

Basic equations describing the reactive diffusion in cylinders are
developed in the following. We will then use computer simulation
in order to solve this set of equations. Various examples will help us
discuss the interplay between diffusion, elastic stress, plastic
relaxation and vacancy concentration. In addition, we will show
that applying external forces on the wires allows controlling the
reaction: either accelerate or decelerate the process, enhance or
hinder the formation of an intermixed phase as desired.

2. Basic equations

In order to keep the analytical formulas transparent, we will
refer to isotropic elasticity. As it was pinpointed by Beke et al. in
Ref. [8], the creation of a new phasewith a different specific volume
from the parent phases during reactive diffusion induces a stress-
free strain. This stress-free strain, in turns, plays a major role in
the kinetics of the process. Therefore, our model needs to describe
the stress-free expansion and plastic deformation as it was already
discussed in Refs. [1,9]. Stress-free expansion is supposed to be
isotropic; accordingly, it has the form ε

SF
ik ¼ ε

SFdik (dik is the unit
tensor). In plastic deformation, volume remains constant, i.e.
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trbεP ¼ 0; i.e. plastic deformation is anisotropic, but it can be sup-
posed that all the non-diagonal elements of the tensor bεP are equal
to zero, therefore its components can be expressed as ε

P
ik ¼ ε

P
ikdik.

Thus, the stress induced by the creation of a new phase after plastic
relaxation can be written as

sik ¼
E

ð1þ yÞð1� 2yÞ f½ð1� 2yÞεik þ nεlldik� �
h
ð1þ yÞεSF

þ ð1� 2ÞnεPik
i
dik

o
(1)

using the Einstein's summation convention. In terms of displace-
ment ( u!), the equation of equilibrium in the case of internal stress-
free strain is
εrr ¼ 1þ n

1� n

8><>:� 1

r2

Zr
Ri

r
�
ε
SF þ 1� 2n

1þ n

�
ε
P
rr þ A

��
dr þ ε

SF þ 1� 2n
1þ n

�
ε
P
rr þ A

�9>=>;þ C1 �
C2
r2

� n
C3
E

εqq ¼
1þ n

1� n

1

r2

Zr
Ri

r
�
ε
SF þ 1� 2n

1þ n

�
ε
P
rr þ A

��
dr þ C1 þ

C2
r2

� n
C3
E

εzz ¼ C3=E

(6)
1� n

1þ n
grad div u!� 1� 2n

2ð1þ nÞ rot rot u
!¼ gradεSF þ 1� 2n

1þ n
divbεP

(2)

where n is Poisson's ratio, E is Young's modulus.
3. Solution of the equation of equilibrium in the case of a
fixed cylinder

In order to mimic the conditions of a core-shell nanowire, we
solved the equation of equilibrium assuming a cylindrical sym-
metry. The wire is also considered fixed at both ends and can be
stressed initially in the axial direction (the solution for a free wire is
given in Appendix A). This specific geometry implies the following:
only the radial component u of the dilatation vector differs from
zero (azimuthal and axial components uq ¼ uz ¼ 0). Consequently
eq. (2) has the following form in cylindrical coordinates

1� n
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Here the indices “rr” and “qq” denote the radial and the
azimuthal components of the tensors. Applying axial force to the
wire initially and fixing its ends under this stressed state, the so-
lution of the equilibrium equation is

u ¼ 1� n
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where
A ¼ 2
Zr
Ri

ε
P
rr
r
dr (5)

C1, C2 and C3 are constants of integration to be determined from
boundary conditions and Ri is any convenient lower limit for the
integral, such as inner radius of a hollow cylinder or Ri ¼ 0 for a
solid cylinder. Eq. (4) has been obtained using trbεP ¼ 0. Since the
wire is fixed at both ends εPzz ¼ 0 and ε

P
rr ¼ �ε

P
qq
. Note that without

any axial initial force, the term �n C3
E r vanishes. Therefore, this term

considers that the displacement is affected by the uniform initial
stress applied.

Knowing the displacement vector, the components of the total
strain tensor in cylindrical coordinates can be determined using
εrr ¼ du=dr, εqq ¼ u=r and εzz ¼ duz=dz [10]. For these we obtain
The components of the stress tensors can then be obtained by
substituting the strain components in eq. (1):

srr ¼ � E
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The constants of integration can now be determined using the
boundary conditions. For instance, in the case of a solid cylinder
(Ri ¼ 0) with free outer surfaces (srrðRoÞ ¼ 0) the displacement at
the center of the cylinder is equal to zero: uðRiÞ ¼ 0. Thus, it follows
from eq. (4) that

C2 ¼ 0 (8)

By definition C3 is the uniform axial stress applied initially, so

C3 ¼ s0zz (9)

Moreover, since the cylinder is free to expand in the radial di-
rection, the radial component of the stress tensor vanishes at the
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outer surface: srrðRoÞ ¼ 0, where Ro denotes the radius of the outer
surface of the cylinder. Combining this boundary conditionwith the
first of eq. (7) and eq. (8), we obtain the following expression for C1:

C1 ¼ ð1þ nÞð1� 2nÞ
1� n
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�
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r
�
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��
dr

� ð1� 2yÞAðRoÞ (10)

4. Thermodynamics, diffusion and associated stress-free
volume change (εSF)

The above theory provides us with the necessary tools to handle
any kind of internal stress-free volume change and plastic relaxa-
tion. As it was already described in Ref. [1] εSF can be determined
during a solid state reactive diffusion experiment. In general, it is
necessary to distinguish between volume transport caused bymere
diffusion and volume transport caused by deformation (convec-
tion) arising from imbalanced partial diffusional fluxes, creation/
annihilation of vacancies and change in specific volume by reaction.
Similarly to what has been done in the case of nanospheres in
Ref. [1] the stress-free volume change can be determined for a core-
shell nanowire:

DεSF

Dt
¼ �1

3

(
1
r0

Xn
i¼1

v

vr0
½r0ðUi � UvÞji� � q

)
(11)

Given this specific geometry, fluxes only flow in the radial di-
rection. Here D=Dt is the substantial (or material) derivative. It gives
the rate change of any scalar quantity seen at a point which follows
the motion of the material coordinate system. It is related to the
time derivative in the spatial coordinate system byDa=Dt ¼ va=vt þ
v!Va . Moreover, Ui is the atomic volume of component i, and Uv is
the volume of a vacancy. The prime denotes that the calculation of
the stress-free change of a volume element is done in the material
coordinate system, and q is the relative change in volume caused by
creation/annihilation of vacancies and change in specific volume
[1]. By integrating this equation, it is possible to follow ε

SF over
time.

4.1. Calculation of the fluxes j
!

i

The flux of component i can be written as [1,9]
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�i
for i ¼ 1;…;n;

(12)

in which we have conveniently defined D i ¼ D�
i =c

0
v , with D�

i
being the tracer diffusion coefficient of the chemical component i
[1,11]; k and T are Botzmann's constant and the absolute tempera-
ture. Furthermore, mi and mv are the chemical potentials of the
component i and of the vacancies respectively. P is the pressure. r is
the total material density (number of lattice sites per volume) and
can be calculated from the partial material densities of the com-
ponents i (ri) and that of the vacancies rv: r ¼ Pn

i¼1ri þ rv. ci and c0v
are the atomic fraction of component i and of the vacancy in
equilibrium; atomic fractions are related to the material densities
by

ci ¼
ri
r
for i ¼ 1;…;n and i ¼ v: (13)
4.2. Chemical driving forces

In the following examples, we consider a binary system A-B. The
corresponding free enthalpy curves have been tuned to lead to the
formation of only one intermetallic phase B2A. These conditions
have been chosen close to the observation in many experiments
regarding reactive diffusion in nanostructures. Usually, only a single
intermetallic is formed in early reaction stages and this phase in
general does not reveal a symmetric AB composition. For instance
in the experiments described in Ref. [2], the authors studied reac-
tive diffusion in Cu-Al diffusion couples where only the formation
of Al2Cu was observed.

The Gibbs energy of mixing of an ideal binary solid solution (SS)
is natural, while the Gibbs energy of the intermetallic phase (IM) is
approximated by a second order polynomial:

gSS ¼ kT ½clncþ ð1� cÞlnð1� cÞ�
gIM ¼ �g0 þ Vðc� cmÞ2

(14)

Concerning the intermetallic phase, cm denotes the stoichio-
metric concentration of component A and g0 and V are parameters
which can be adjusted in order to reflect the existence range of the
intermetallic phase. Knowing this, the chemical potentials of
component A for the solid solution and the intermetallic phases can
easily be determined:

mSSA ¼ kTlnc

mIMA ¼ �g0 þ V
�
� c2 þ c2m þ 2c� 2cm

� (15)

Both the free enthalpy curves and the chemical potential mA are
displayed in Fig. 1. Existence ranges of the solid solution and the
intermetallic have been determined using the double tangent
method. Since in the composition ranges 0… c1 and c4 … 1 the solid
solution is stable, the chemical potential is calculated from mSSA ; in
the range c2… c3, the intermetallic compound is the stable phase, so
mA is calculated from mIMA . In the two-phase ranges c1 … c2 and c3 …
c4, the chemical potential remains constant and equals to mA(c1) and
mA(c3) calculated from either mSSA or mIMA . mB can be determined
analogically.

4.3. Composition over time and continuity equation

In order to simulate reactive diffusion, the change of composi-
tion in time and space caused by vacancy mediated diffusion is
calculated using the equation

Dci
Dt

¼ �1
r
V

0
j
!

i � cisv for i ¼ 1;…;n; (16)

for all n atomic components [1]. V' indicates the divergent calcu-
lated in the material coordinate system, and sv gives the rate of
change of the vacancy concentration due to their creation/annihi-
lation at the sinks and sources.

For cylindrical geometry if fluxes only flow radially, eq. (16)
becomes

Dci
Dt

¼ � 1
rr0

v

vr0
ðr0jiÞ � cisv (17)

4.4. Change in volume - q

We consider two contributions to q: the relative change in
volume caused by creation/annihilation of vacancies (qv) and the
change in specific volume due to phase transformation (qsv):



Fig. 1. Free enthalpy of mixing for a solid solution (gSS) and a B2A intermetallic (gIM)
phase; corresponding chemical potential for the component A is displayed in the
bottom panel. (cm ¼ 0.33333, g0/kT ¼ 0.8 and V/kT ¼ 10).
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q ¼ qv þ qsv (18)

Concerning qv, we supposed that a pressure P changes the va-
cancy concentration from its unstressed equilibrium value c0v to:

cv Pð Þ ¼ c0v exp
�
­
UvP
RT

�
(19)

in which P ¼ �1
3 trbs. The rate of vacancy creation/annihilation at a

source/sink is considered to be proportional to the deviation of the
current fraction of vacancies from the equilibrium one

sv ¼ Kr

�
c0v exp

�
­
UvP
RT

�
� cv

�
(20)

where the rate coefficient Kr determines the effectiveness of sinks
and sources. We emphasize that Kr is not necessarily a constant but
may vary, for instance, with spatial coordinates depending on the
spatial distribution of the sinks and sources. In the following ex-
amples, Kr ¼ 1 at the outer surface of the nanowire and at the
intermetallic interfaces. Kr ¼ 0 everywhere else. Note that other
expressions for sv can also be used. See for instance in Refs. [12,13].
However, the present work is not intended to investigate the role of
the different expressions for sv. Knowing sv and cv(P), qv can be
determined as:

qv ¼ svrUv (21)

Concerning the relative change in volume due to phase trans-
formation qsv, it depends on the crystallography of the system and
is an input parameter. For example, in the following, the change in
specific volume for a reaction Aþ 2B/B2A is chosen to be 6%,
therefore qsv ¼ 0.06.

5. Stress relaxation via plastic deformation

Our model allows the stress created by reactive diffusion. This is
achieved by enabling complete plastic relaxation in the newly
created intermetallic phase. Plastic relaxation is governed by the
shear part of the stress tensor. Therefore, only shear stress (bsshear)
induces shear strain (bεp) or strain rate ( _bεp). In the case of a large
plastic deformation, the distribution of shear stress is determined
by viscous flow, as follows: bsshear ¼ 2h _bεp, where h is the shear
viscosity. Accordingly,

_bεp ¼ 1
2h

bsshear ¼ 1
2h

�bs � 1
3
trbs� (22)

More particularly, in the case of a cylinder geometry

_εPrr ¼
1
6h

ð2srr � sqq � szzÞ

_εPqq ¼ � 1
6h

ð2sqq � srr � szzÞ

_εPzz ¼ 0

(23)

Note that _εPzz ¼ 0 stems from the fact that we are describing a
nanowirewhich is fixed at both ends. Furthermore, even thoughwe
limit ourselves to viscous flow, other mechanisms can lead to stress
relaxation and can be implemented in eq. (22).

6. Numerical calculation

In the following examples, the reactive diffusion in core-shell
nanowires has been simulated. In order to calculate the radial
composition and the stress profile over time, eqs. (17) and (7) must
be solved along with (12), (20), (11) and (23). To this end, a finite
volume method (FVM) was used. The nanowire was divided into n
cylindrical shells. During each iteration, the atomic and volume
fluxes between each neighboring shells are calculated. In turns, the
composition, the stress and the shell thickness is updated in each
cell. For a more detailed presentation of the numerical algorithm
see Ref. [1].

In most cases samples were divided into 120e150 shells, how-
ever different numbers were also used to check independency of
the mesh. The following input parameters were used: Ri ¼ 0 in
order to simulate a solid nanowire core and Ro was in the range of
45e145 nm, representing the initial radius of the wires.

Initially, the vacancies were distributed homogeneously inside
the wire and usually their concentration was c0v ¼ 10�3. Although
this is much larger than in real cases, more realistic values of c0v
would drastically increase the computation time. Nonetheless, tests
were performed with c0v ¼ 10�4 � 10�6 and led to the conclusion
that the value of c0v did not change the results qualitatively.

D*
A=D

*
B ¼ D A=D B ¼ 0:1 in the intermetallic phases; outside

D A ¼ D B. This corresponds to a typical situation. Often, the
diffusivity of the majority component in an intermetallic reveils a
higher mobility (Cu3Au rule), while the partial diffusivities in a
random alloys are quite close, given a vacancy mechanism of
diffusion [14,15]. D A ¼ 1:8� 10�14 m2/s; although its value does
not play an important role, just scales the time. As we did not
intend to fit particular experimental data, determination of the real
timescale was not crucial.

In addition, atomic volumes of both species were approximated
to be similar: UA ¼ UB ¼ 7� 10�6 m3/mol. T ¼ 700 K, although in
the calculations presented in this work, it does not play any role,



Fig. 2. Profiles of stress and composition for a B wire coated by an A layer: initially (a)
stress free s0zz ¼ 0; (b) applying compressive s0zz ¼ �1 GPa; (c) applying tensile s0zz ¼ 1
GPa stress. Thicknesses of the grown intermetallic layer are 6, 4 and 9 nm, respectively.
(The calculation time and the axises are the same for (a)e(c) for direct comparison.).
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since due to the supposition UA ¼ UB ¼ Uv, the only terms con-
taining the temperature explicitly vanishe. To mimic the conditions
supposed in Ref. [2], E¼ 90 GPa and n¼ 0.345 and the viscosity was
set to 10100 Pa outside the intermetallic phases to prevent any
relaxation, and to 103 Pa inside the intermetallic phases to allow
complete plastic relaxation.

Finally we note that equations for free standing cylindrical wires
(free ends) are given in Appendix A. In this case the algorithm is the
same but the corresponding equations must be used.
7. Results and discussion

Themodel described above provides us with the necessary tools
to study the interplay between stresses and reactive diffusion
during the aging of a nanowire. First, we show results obtained for
cylindrical bilayers. This simple geometry will help us to clear up
the role of stresses and their possible relaxation. To this end, we
have performed the following calculations for A/B (A is inside and B
outside) and B/A stacking orders of the bilayer core-shell structure:
i) no initial axial stress, applying ii) compressive, and iii) tensile
initial stress. In all calculations, partial diffusion coefficient of the
majority component B inside the intermetallic (B2A superlattice
structure) was 10 times higher than that of the A component. In all
cases, the growth rate of the intermetallic layer considerably de-
pends on the stacking sequence. In the A/B wires, the growth is
slowed down compared to B/Awires in which it is accelerated. This
different behavior is a direct consequence of the vacancy gradient
which develops inside the wire (see Fig. 2a). As a general trend, and
independently of the stacking sequence, the core of the wire gets
under compressive stress and the outer part under tensile stress.
This leads to the development of an increase in the vacancy con-
centration towards the surface of the wire. Inside the intermetallic
layer, the vacancy gradient is always pointing outwards, whatever
the stacking order. On the contrary, the vacancy flow generated by
the difference in mobility of A and B species does depend on the
stacking order and is always directed towards the B phase. In the
case of the A/B wire, the vacancy flow is directed upwards the
existing vacancy gradient whereas in the case of the B/A wire, it is
directed downwards. Consequently, the growth of the intermetallic
is slower for the A/B wire and faster for the B/A wire.

Fig. 2 shows that applying initial axial force to the wire in-
fluences the growth rate of the intermetallic dramatically.
Compressive stress (s0zz <0) slows down the process, whereas
tensile one (s0zz >0) enhances the growth as compared to the
initially stress free case (s0zz ¼ 0). This is because the initial axial
stress superposes on the developing stress field, which affects the
hydrostatic stress. The change in hydrostatic stress (or pressure),
controlled to a major part via the change in szz, influences the
overall vacancy concentration in the wire (see eq. (19)) which, in
turns, influences the speed of the reaction. As can be seen in Fig. 2,
the application of 1 GPa of axial stress changes the growth rate of
the IM by about 50%. This first observation is already of prime in-
terest, since it means that the kinetics of reactive diffusion in a
nanowire could be controlled by applying an initial stress along the
wire axis.

In order to point out the influence of the stacking order com-
bined with the initial applied stress, we repeated the calculations
for a trilayer core-shell nanowire; A/B/A. Interestingly, the inter-
metallic grows asymmetrically as can be seen in Fig. 3a: faster at the
outer interface than at the inner interface. On the basis of the
explanation for the bilayer geometry, the interpretation of these
results is quite straightforward. It is, again, the distribution of the
vacancies determined by the stress field, which controls the growth
rate. The profile of hydrostatic stress has a stepwise character
decreasing from outside to inside for both stacking orders.
Accordingly, vacancy concentration also decreases towards the
center. The intermetallic layer grows slower at the interface at
which the direction of the gradient of vacancy concentration is
opposite to the gradient of the A (slower) atoms. As a result, the
growth rate is larger at the outer interface for the A/B/A.

The application of compressive initial axial stress on the wire, as
expected on the basis of the results for the bilayer, will depress the
growth rates but the qualitative behavior remains the same as
previously described. More interestingly, when applying a tensile
initial axial stress we predict a striking effect. As it can be seen in
Fig. 3, the application of increasing initial tensile stress leads to
different observations. First of all, the growth rate increases
(Fig. 3b) as it was already the case for the bilayer. But more
importantly, if the tensile stress is high enough, the asymmetry is
suppressed and even reversed (Fig. 3c). The origin of this lies in the
fact that the application of a rather high initial tensile stress masks
the stress variations caused by reactive diffusion. Consequently, the
overall gradient of the hydrostatic stress towards the free surface,
which was observed in an initially stress free wire, vanishes.
Diffusion kinetics is then governed by a vacancy concentration
profile which is not step-like anymore, as can be observed in Fig. 3c.

Ultimately, this even leads to the inversion of the asymmetry in
IM layer growth rate inside the wires. This inversion can be seen in
Fig. 4. Here, we show the thickness of the grown IM layers during
two different simulations: i) without initial stress s0zz ¼ 0; ii)
applying tensile stress of s0zz ¼ 3 GPa. As expected, the overall ki-
netics of the reactive diffusion process is much faster in the case of
the tensile stress due to a higher average vacancy concentration in



Fig. 4. Thickness of the IM layers over time for a fixed wire (black curves) and a for an
initial applied tensile stress of 3 GPa (grey curves). The data has been fitted using an
allometric fit, the original data which exhibits steps corresponding to the mesh of the
simulations is given in the inset.

Fig. 5. Profiles of stress and composition for an A/B/A wire: initially stress free s0zz ¼ 0.
The radius of the core is (a) 25 and (b) 115 nm. For case (b) the asymmetry in IM
growth cannot be observed.

Fig. 3. Profiles of stress and composition for a A/B/Awire: a) initially stress free s0zz ¼ 0;
b) applying tensile stress of s0zz ¼ 1 GPa, and c) s0zz ¼ 3 GPa. The tensile stress increases
the growth rate but not only. If high enough, it can suppress the asymmetry, or even
revert it in later stages (not shown here). For better comparison, the width of the outer
IM is the same in all shown cases.
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the whole wire. In addition, one can clearly see that in the initially
stress free wire, the inner IM grows faster whereas in the tensile
stress case, it is the outer IM layer which is the wider. This obser-
vation itself is of prime interest because it demonstrates how
applying stress to an ageing nanowire might be utilized to control its
final microstructure.

Finally, it is worth noting that the peculiar stress profiles
developing during reactive diffusion are the consequence of the
geometry of the problem. As it has already been demonstrated now,
switching from a spherical geometry to a cylinder induces
tremendous changes in the behavior of the IM growth. Additionally,
it can be expected that with increasing the core radius of the
nanowires, the observed asymmetry will decrease or even vanish
(since increasing the radius will ultimately correspond to reaching
a planar thin film configuration). To check this, we repeated the
calculations with an increasing core radius as it is shown in Fig. 5.
As expected, the asymmetry almost completely disappears for a
core with a radius of 115 nm, demonstrating that the discussed
effect can only be observed in nanometric structures.

We also performed this calculation for the spherical geometry
(not included in Ref. [1]), which also shows, as expected, that with
increasing sphere radius the peculiar behavior disappears (see
Appendix A).

It is worth saying some words about the possibility of experi-
mental verification. A suggested way to apply initial axial stress on
a cylinder could be by pressing a cylindrical pillar by the tip of an
atomic force microscope (AFM) or a nano indenter. The required
force to apply 1 GPa of axial stress is in the range of 5e30 mN for
pillars with a radius of 40e100 nm, which is well feasible.
8. Conclusions

We studied theoretically the reactive diffusion in core-shell
nanowires. A complete set of analytical equations has been devel-
oped, taking into account elastic stress caused by the formation of
new phases and initial axial straining, its plastic relaxation and
non-equilibriumvacancy distribution caused by imbalanced atomic
fluxes, moreover the thermodynamic potentials to model the for-
mation of an intermetallic phase in a binary alloy. This model was
used to predict that elastic stresses have a tremendous influence on
the growth rate of intermetallic layers in simple core-shell geom-
etries (A/B and B/A) and more complex structures such as triple
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layers (A/B/A).
Our first conclusion is that in an initially stress free nanowire,

growth rates of the IM layers significantly depend on the stacking
sequence. In the case of a positive volume excess of the reaction, the
nanowires are under compressive stress in their inner part and
under tensile stress towards their outer surface. This leads to an
inhomogeneous vacancy distribution which hinders the outward
flux of vacancies.

Second, we have shown that by applying initial axial stress to
the nanowires, we may affect the IM growth. Applying a
compressive stress, for instance, reduces the average vacancy
concentration in the nanowires, leading to a decreased growth rate
of the IM. Inversely, an initial tensile stress speeds up the process.
More interestingly, for the triple layer geometry we may force the
asymmetry in growth rates by applying compressive stress and
suppress or even reverse it by applying tensile stress.

The simulated reactions show that it is possible to control the
microstructure of a nanowire undergoing reactive diffusion just by
applying initial stress to it. The developed model will also be useful
to clear up the role of stress in the nowadays popular nanowires
and nanotubes.
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Fig. B.1. Profiles of stress and composition for an A/B/A layer stack on a rigid core
sphere (initially stress free). Radius of the inner core a) 1 mm, b) 100~nm, and c) 10~nm.
Asymmetry in growth rates of the reaction products vanishes with increasing core size.
Appendix A. Free ends

If the wire is not stressed initially in the axial direction, normal
force distributed according to

szz ¼ � E
1� n

ε
SF þ nE

1þ n

�
ε
P
rr þ A
1� n

þ 2
1� 2n

C1

�
(A.1)

must be applied to the ends of the cylindrical wire in order to keep
uz ¼ 0. If we superpose a uniform axial stress, we can choose C3 so
that the resultant force on the ends is zero

ZRo

0

szz2prdr ¼
ZRo

0

C32prdr ¼ C32pR
2
o (A.2)

Note that the self-equilibrating distribution remaining on each
endwill give rise only to local effects at the ends according to Saint-
Venant's principle (“ … the difference between the effects of two
different but statically equivalent loads becomes very small at
sufficiently large distances from load.”) [16,17].

The stress srr and sqq will still be given by the first and second in
eq. (7). The radial displacement and the radial and azimuthal strain
components will also be given by eq. (4) and the first two of eqs. (6)
and (A.2), respectively. The axial displacement and strain are,
however, corresponding to the uniform stress C3 determined from
eq. (A.1) and: εzz ¼ C3=E. The constants of integration C1 and C2 for a
solid cylinder will still be given by eqs. (10) and (8), whereas C3
C3 ¼ 2E
1� n

1
R2o

ZRo

Ri

rεSFdr � 2nE
ð1þ nÞ
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(A.3)

Finally the axial component of the shear strain rate is

_εPqq ¼ � 1
6h

ð2sqq � srr � szzÞ (A.4)
Appendix B. Radius dependence for spherical geometry

Fig. B1 shows for a spherical core-shell structure that with
increasing core radius the asymmetry in IM growth disappears. The
core is rigid and inert, only the three layers on top react. The pa-
rameters and the algorithm were the same as in Ref. [1].
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