ACTA UNIV. DEBRECENIENSIS NHIV-XOV, 321 (2002)
DE LUDOVICO KOSSUTH NOMINATAE
SERIES PHYSICA ET CHIMICA

KINETIC OF SURFACE SEGREGATION AND SPINODAL DECOMPOSITION
IN THIN FILMS - GENERALIZATION OF MARTIN'S MODEL FOR
VACANCY MECHANISM

Z. Erdélyi, H. Bakker* and D. L. Beke

Department of Solid State Physics, University of Debrecen,
H- 4010 Debrecen, Hungary

*Van der Waals-Zeeman Laboratorium, Universiteit van Amsterdam,
Walckenierstraat 65, NL-1018 XE Amsterdam, Netherlands

(Received 14 June 2002 )

Abstract

¥

It is shown that the generalization of the Martin’s kinetic deterministic
equations (with direct exchange of atoms) for vacancy mechanism is capable to describe
the solid-vapour equilibrium in both pure or binary solid solution systems. The correct
equilibrium values of vacancies are already well reproduced by taking only one initially
empty plane at the surface, although the “solid—vapour” interface is about two atomic
planes thick. For the process leading to phase separated and surface segregated states,
the model gave the same kinetics in initially homogeneous, fifty-fifty spinodal systems
as the direct exchange of atoms. We have shown that in weakly segregating systems,
above a certain critical slab thickness, d., an interesting reversal takes place during the
above process; first there is an increase (segregation) of B atoms at the surface, which —
as a result of the coarsening of the spinodal structure — is followed by a fast decrease of

the B atoms at the surface. On the other hand in slabs with d<d, — due to a special size
effect — this reversal can not take place.
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Introduction

In 1990 G. Martin [7] derived a simple, but very useful set of deterministic
kinetic equations for one—dimensional interdiffusion in a binary solid solution. However,
these equations are given for the exchange mechanism, i.e. they are based on the
definition of the exchange probability between the two species. Generalization for a
vacancy mechanism (on the basis of a more sophisticated master equation) was
presented by Belashenko and Vaks [3], but this yielded unrealistic phenomenological
transport coefficients, because the correlation effects were neglected. The improvement
of these equations was given by Nastar et al. [8] and also a general set of kinetic
equations has been derived by them.

In our paper — focusing on changes of the concentration distributions in slabs due
to surface segregation and spinodal decomposition and/or phase separation — we present
a generalization of the original Martin's kinetic deterministic equations for vacancy
mechanism. Although correlation effects are not involved the advantage of this approach
is its relative simplicity. Furthermore, as we will illustrate here, these simple equations
are capable for the description of the kinetics of processes establishing equilibrium
between the solid solution and its vapour phase as well.

The organization of the paper is as follows. First the generalized model is
presented, then the calculation procedure is described, which is followed by the
presentation of the results and their discussion, as well as by the conclusions .

The model

As it is well known the Martin's model [7] consists of a slab of material with N
lattice planes, normal to the y axis. Each atom in a plane (e.g. in the ith atomic layer) has
z, nearest neighbours in this plane as well as z, in plane (i+ /) and plane (i=f). Thus the
coordination number is Z= z +2z,.

The change in concentration of A or B in plane i is given by

detddtm Iy —T e K=A,B, (0

where J%,;,; is the net flux per lattice site of K atoms from layer i to i+/. Let us now
define J%,;,, as:

in,'m = Zv[cxi‘-‘viurui,.‘u = CKiucvier,i}- (2)

Here e.g. ¢ and c'; are the fractions of K atoms and vacancies, respectively in the ith
layer (see also [6]). Obviously

ch+ehi+et =1, (3)
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and
de"fdt = - de; /dt — de®ydt. (4)

Furthermore in (2) z.c%.; is the probability to find a vacancy on a lattice site in layer
{i+1), next to the jumping atom being in layer i and '*,;.1 is the frequency with which
one K atom in plane i exchanges with a vacancy in plane (i+/) (the first index denotes
the plane where the jumping atom is). Under steady state

dc¥ydt=0, K=AB, (5)
which means — in a closed system — that J%;;,, = 0 whatever i [1). Therefore

(e ) = T M, K=AB. (6)
The atom-vacancy exchange frequencies can be given by expressions such as

01 = vexp(-En/kT), K=AB, Q)

where k and T have their usual meaning and the pre-exponential factor (the attempt
frequency) v is in the order of the lattice vibration frequency i.c. v=10"s". In principle
E‘i.m is the activation barrier for the atom-vacancy exchange. For reason of simplicity
and without loss of generality we took the saddle point energy equal to zero (see also
[4]) and thus EX,;,,=-EX,, i.e. EX;;,1 can be taken as the negative value of the energy of K
atom in the layer i. There are many choices of EX, which fulfil (6) [7].

It is worth to check whether (6) — with appropriate E¥| energies — is identical to
the condition of equilibrium or not. This can be done in a similar way as it was made in
(7] for the direct exchange model. In order to find the free energy per number of lattice
sites in one plane, f = u - Ts, first we need expressions for the internal energy, u, and the
entropy, s, of a binary system with vacancies (f is related to the free energy per atom, f,,
by f,=f/N). Using the Ising model with only nearest neighbour interactions and the
Bragg-Williams approximation the internal energy can be given as

u= 1/2 TchEN + cBEY), (8)

where the summation should be taken from i=1 to i=N. The factor 1/2 is to avoid the
double counting of bonds, and the binding energy of a K atom in an internal plane i is:

EX = z,[(cMNtcti) Vax + (€Br+c®) Via) + zi(chVax+c® Via), (2)
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where Vax and Vg are the nearest neighbour pair interaction energies (Vax.Vin <0).
Using (3)

u = (1/2)Zx {20 T (et arre® i) Vax + (Bntc®) Vial +2Ze5(chVak + "1 Vi)
+ 2[(X PN ) Vak + (€51 e ne"na) Vial - (10)

Here ¥; means summation from i=2 to i=N-1. Furthermore the mnﬁguratmnal entropy
is given by

= %, [eMinc®; + (1- ¢ - ¢*DIn(1- ¢*; - €") + ¢'iinc’y]. (11)

Now in a closed system the number of lattice sites and the number of A and B atoms are
constants, and thus for the average fractions

e rci=1

and ¢* + ¢® = const. (12)
relations should be fulfilled (where the average fractions are given by Ne®=Xic% with
a=AB.v)

It can be seen from (3), (10), (11) and (12) that the state of the system is given
by two sets of fractions chyncty as well as c',...,¢'n, which can be represented by
vectors C* and C”, respectively. Thus the extrema to be found are those of KCA.C™) +
AaNc* + A,Nc', where A, and A, are Lagrange parameters introduced by tha constrains
(12). After simple, but lengthy algebra (taking the derivatives by c® and c%
respectively) — and using the notations V= Vg~ VastVee)/2 as well as P—V+{‘~.-’M-
Vpe)l2=Vp—Vpe — it is found that for 2<i<N-1

- QVIKT)[ZM 4zt et a=2¢™)] - (PKT)[Ze 2ot ia=2¢")] + PZ+
+ In(c™/{1-cH-c"i)) = AJKT (13)
and
— (Vaa/KT)[Z(1-c")-2,( a1 +¢5ia-26"D] = (PKTY[ZY, +z(chire’ia-2¢4)] +
+ In(c"Y/{1-¢%—¢%}) = AJKT. (14)
Relations for i=1, 2 as well as for i=N-1, N can be also easﬂ}r obtained.

Let us check now whether (6) with the choice E X;u= — E" (see also (9))
corresponds te  the equilibrium conditions (13) and (14), or not. Since (6) should be
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valid for both K=A and K=B, combining these equations the following steady state
condition results;

(e MePie™ ) = MM i D). (15)
But - taking into account (7) - this leads to
kTIn(c*/c®) + EX - E® = kTIn(ch,1/c%1) + BNy - E%.. (16)

Substituting E¥; and EX,,, from (9) one can see that the left hand side of (16) is identical
to (13) (A, is constant).

It can be also seen that, since in the bulk layers c"j«l, i.e. the second term in (13)
can be neglected, we arrive — apart from the constant ZP — at the same condition derived
by Martin (eq. (5a) in [7]) for the exchange model without vacancies. On the other hand
equation(14) is in fact the condition for the vacancy equilibrium. Accordingly A,=0 (A,,
similarly as A, for species A, can be called the vacancy chemical potential [7] and in
equilibrium it should be equal to zero). Thus, neglecting the inhomogeneity terms and
using that c"«c’™,, for an internal layer

KT Inc'y(1-¢%) = (Z/KT)(Vep+Pc?), (17

which in a pure B matrix (c*=0) - as it is expected from a model of breaking bonds -
gives

kTlInc'; = ZVap. (18)

This result rises the problem of getting realistic vacancy concentrations. If we
would take Vpg from the cohesive energy in the pure B, the vacancy formation energy
would be very high within the Ising model and Bragg-Williams approximation. This is
because (18) says that AH," = — ZVy,. However, this "vacancy formation energy”, as
determined by equation (14), is fixed - similarly as the EKi i+1 Migration energies in (15)
and (16) - apart from an additive constant only. In fact in (14) the reference state is the
vapour: we need ZVgg energy to take one atom from the bulk and put it far from the
solid into the vapour. (We will see later that the model is really capable to treat the
solid-vapour equilibrium.) However, the vacancies are formed at the solid-vapour
interface (which is the only source/sink of vacancies here) and during the process they
flow into the crystal until the equilibrium is established. Thus better 1o choose the
reference state — according to the usually accepted "rule”(see e.g. Beke, [1]) that during
the formation of a vacancy from the Z bonds broken about Z/2 bonds are re-established
at the surface — by adding the constant ZVgg/2 to the left hand side of (14) i.e.
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AH,= - ZVpg/2. (19)

But the real vacancy formation energies are still smaller than this value because in our
model the relaxation energies are not involved. Thus still realistic pair interaction
energies would result in much too high vacancy formation energies and so in very low
and unrealistic vacancy content, making the diffusion process (and simultaneously the
program) extremely slow. Therefore we decided to derive the pair interaction energies
from the real vacancy formation energies, in pure A and B, according to (19).

Calculation procedure

A numerical method can be used to solve the set of coupled differential equations
(1) (with (2), (4), (7) and (9)) to obtain the time evolution of the concentrations in
different planes. We have a symmetrical system with a symmetry plane in the centre,
numbered by n, i.e. €%y, =c"y.1, €% pa1=c®,.; and obviously ¢'pyi=c".1
Due to K atom—vacancy exchanges between layer i and layer i+1, the rate of the
change of A atoms in the i" layer can be given as:

(de®)ide = -1%,,. (20)
Thus eq. (1) can be given as:
de®, Jdt = (de®) rde - (de¥y ) dt @D

The calculation procedure now is as follows. An initial atomic configuration of the
layers is defined and the right-hand side of eq. (20) (for K=A and B) is calculated for the
first layer. A (small) time step dt is chosen and the corresponding changes of the
concentrations of A and B atoms as well as vacancies in the first layer, dc®; (0=A,B,V),
are evaluated from the above equations after a (small) time step dt. Then obviously

de®; = - de). (22)

Then the concentrations in the first and second layers are updated and again a time step
dt is made. This procedure for the first layer is continued until the sign of the change
reverses. Then subsequently the second and the third as well as the third and fourth
. layers are brought into quasi-equilibrium in the same way, and so forth. After the one
but last and the last layers have been brought into quasi-equilibrium, the whole
procedure is repeated.
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With the first layer (layer 1) as a source and sink of vacancies, the system will
establish a momentary quasi equilibrium of vacancy fraction in each layer and, at a
much slower rate, of fractions of A and B atoms. Like in nature the vacancy diffusion is
fast, whereas the atomic diffusion is slow.

The main difficulty is the right choice of the magnitude of the time steps. If the
time step is chosen too short, virtually *nothing® will happcn whcmas if it is too long,
atomic fractions could fall outside the [0,1] range (de¥; and so -dc®,, in eq. (21) muld
be hn&hcr than the maximum pusmblc change of c*; or c“,.,, which is e.g. equal to c¥; or
(1-c™;) depending on the sign of dcX i). Because of the high vacancy content of the f' rst
(and later on also of the second) layer, and moreover, because of the relatively small
activation energy for atoms in these layers (due to the contact with vacuum in the first
layer), the atomic diffusion in these layers is very fast as compared to the bulk.

We solved the problem of choosing an efficient time step in the following way.
We determined say for the layer i the minimum value of de;™ and dey,,” (0=A,B,v) for
dt=1, and then we chose dt in such a way that the relative change of this minimum value
was, for example, 0.1% or 0.01%. The other quantities will then change by a smaller
relative amount. Then this procedure was repeated until the variations changed sign and
the time elapsed was summed during such a procedure. The maximum time elapsed
between any two of the layers 1...n during such a run was taken as the period of time for
the whole run. (If one would continue during such a whole period the process in the
other layers as well, changes in the concentration would do nothing else than always
alternately reverse sign during such a period, so that virtually ‘nothing’ would happen

any further for those layers.) This trick is necessary to obtain results within feasible
computer running times.

Results and discussion

1. Pure bee system

The program was run for a pure metal B with Vag= - 0.22 eV (i.e. with a
vacancy formation energy of 0.88 eV), for a slab consisting of 13 layers taking z,=4 and
z=0 as well as using one initial empty plane at the surface. The vacancy fraction in a
bulk crystal is then are given by eq. (18) with (19). In Table 1 ¢, values, obtained from
the simulations, are given for the central (7™ layer) at various temperatures. The results
of the program after long enough running time are compared to those calculated from
eqs. (18) and (19). Even for a structure consisting of as few as 13 layers, the agreement
between the results of the simulations and the analytical equation for bulk material is
very good. In fact the influence of the surface extends essentially to the first few planes
only.
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Table 1

Vacancy fraction in a pure metal B at various temperatures from eqs.(18) with (19) as compared
1o the vacancy fraction in the central (7%) layer obtained from the program (Ves = - 0.22 ¢V)

Temperature T (K) | ¢y program | Cy eq.(18-19)
1400 6.79x10™ 6.79x10™
1300 3.87x10™ 3.87x10™
1200 2.01x10™* 2.01x10™
1100 9.34x10° 9.30x10°
1000 3.67x10” 3.67x10°
900 1.17x10° 1.18x10°

Let us now inspect these first planes. We can get an analytical expression for
the fractions in these planes again minimizing f in respect to cB, and c?; if ¢*=0, (z.=4,
z=0). The result is:

¢,%c2"fe,"c,® = exp(-E, */kT)/exp(-E;"/kT) (23)

Eqg. (23) is nothing else than the mass-action law for the reaction (in self-explanatory
notation):

B +V;=B;+V, (24)

It is trivial that:
¢ +¢) =1 (25a)
c® +e'= 1. (25b)

Furthermore, in the starting configuration the first plane is completely occupied by
vacancies and the second layer by atoms. Let us suppose that, during the process of

vacancy-atom exchanges, the sum of atoms and vacancies in the first two planes remains
the same, i.e.:

o'+ =1 (26a)
et +e = 1. (26b)
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Moreover, let us assume that the third plane is approximately occupied by atoms only
(negligible amount of vacancies as compared to the amount of A atoms in this plane):

Elﬂz 4C1BVHB and E:B: 4(Ctn +1)Vgp. (27)

Note that after some algebra an expression can be derived form the above relations for
v
c

1 /(1-¢;") =exp(4c; Vp/kT). (28)

This is an implicit equation that can be solved numerically. In Table 2 we compare the
results obtained by eq. (28) with the vacancy fractions found form the simulations. The
agreement is good in spite of the simplifying assumption by which the above equation
was obtained. It means that the far majority of vacancies resides in the first two planes.

Table 2

Vacancy fractions in a pure metal A in the first and second layer at various
temperatures following the program and compared with the results of eq.(28).
Also the results from the program for the third layer are given (Vpp = -0.22 eV)

Temp. T(K) | ¢ program ¢ eq.28) | cp program ¢ eq.(28) A
1400 8.02x107" 8.05x10™! 1.93x10™ 1.95x10" | 2.74x107
1300 8.11x10" 8.13x10" 1.86x10™" 1.87x10" | 1.65x10°
1200 8.20x10" 8.21x10™ 1.78x10™ 1.79x10" | 9.10x10™
1100 8.29x10" 8.30x10"! 1.70x10" 1.70x10" | 4.60x10™
1000 8.38x10’! 8.39x10"! 1.61x10™ 1.61x10" | 1.91x10*
900 8.48x10™ 8.48x10™ 1.52x10™" 1.52x10" | 6.50x10°

Physically the result indicates that a surface will not be perfect, but always will be partly
empty, partly occupied by atoms, just for thermodynamic reasons (kinks, islands,
terraces).

In order to check the influence of the number of terminal vacant planes, we
repeated some of theses calculations by using initially 3 terminal empty planes as well.
According to the results this parameter does not play an important role in determining
the vacancy equilibrium concentration. We also carried out runs for cases with different
initial concentrations of vacancies in the slab. The final state was always the same with a
“solid-vapour interface”™ of about two atomic planes thick i.e. the atomic fraction of
vacancies changed from its equilibrium value in the solid to its equilibrium value in the
vapour across two planes (Table 1, and see also later). This illustrates that the program
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is capable to describe the solid-vapour equilibrium already with two or three initial
empty terminal planes, moreover for establishing the vacancy equilibrium inside the
sample, already one terminal plane would be enough. However, for reasons of safety, we
made our further calculations for alloys by using 1, 3 or 4 initial empty terminal planes,
[0,

2, Strongly segregating bee AB alloy

It is usual to classify the binary alloys into two groups: strongly and weakly
segregating systems. From the equation of the surface segregation isotherm it is easy to
show (see e.g. [5] ) that there exists a certain bulk composition

&= 12 + (Vaa=Vep)4V, (29)

so that for bulk compositions, ¢, smaller than c, there is a segregation and for c,>cy,
there is a desegregation. Accordingly, if cy<1 the system is weakly segregating, while in
the opposite case we speak about a strongly segregating system (because now only
segregation occurs at any bulk composition: 0=cy<1). Furthermore for weakly
segregating systems if T<T), (the temperature of the miscibility gap at ¢;), depending on
the bulk compaosition either segregation or desegregation is expected.

Beke et al. [2] investigated the interplay between the surface segregation and
spinodal decomposition as well as the effect of the slab thickness in a strongly
segregating spinodal system with parameters (Vpg—Vaa)=0.15¢V and V=V, 5
(Vaa+Ve)2 = +0.035eV, in the framework of the direct exchange model. In order to
compare their results with those obtained from our present model we ran our program
with the same values for (100) direction (z,=4, z=0) at 1400 K.

Note however, that now the absolute magnitudes of the interaction energies
were Vgg = — 0.22 eV, V4= — 0.37 eV (which - according to (19) - correspond to the
vacancy formation energies in Cu and V, respectively) and V,p= - 0.26 eV.

Fig. 1 and 2 show the time evolution of the system with and without vacancies for
two different slab thickness. It can be seen that the agreement is good, i.e. not only the
final states are the same, but the details of the kinetics are also similar. Note that e.g. on
Fig.2b the curve corresponding to the longest time is comparable to the curve denoted
by the same symbols in Fig 2a. In fact — due to the arbitrariness of choosing the saddle
point energy and v in (7) — the absolute time scales are not comparable for the two
mechanisms. However, on a time scale normalised for example by the time necessary to
reach the stage where the two spinodal waves meet in the centre (illustrated by full
squares in Fig. 2a and 2b) the two figures would be practically identical.

It is also important to note that the number of the initial empty terminal planes
did not influence the results i.e. the kinetics in both (exchange and vacancy) models are
the same.
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Figure 1.Time evolution of compasition in a BOC (100} structure without {a) [2]
and with vacancies (b) (21 atomic planes and 4-4 initial empty planes
on the surfaces). Increasing numbers at the curves indicate the time sequence.
Dashed line with open circles denotes the vacancy distribution in the latest state
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Figure 2.Time evolution of composition in a BCC (111) structure without (a) [2] and with vacancies (b)
(6] atomic planes and 1-1 initial empty planes on the surfaces). Increasing numbers at the
curves indicate the time sequence. Dashed line with open circles denotes the vacancy
distribution in the latest state.
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3. Weakly segregating fcc alloy

We also carried out calculations for the (111) direction (z,=3, z=6) at 1000 K for
weakly segregating system with

Vap= - 0.1555eV, V= -0.1728eV and Vpg=-0.12975¢V.
Accordingly ¢,=0.69 and - from a regular solution model — T,=2043 K in this model
system i.e. T<T),. Figures 3a and 3b show that, starting from a homogeneous fifty-fifty
alloy with 19 atomic planes, first a segregation of B atoms starts at the surface and the
segregation generated spinodal wave reaches the centre and overlaps with its sym-
metrical counterpart. However, there is a competition between the surface segregation of
B atoms and the spinodal decomposition and/or the coarsening of the spinodal structure
developed. Indeed as it can be seen in this figure, before the B-rich phase could develop
at the surface the amplitude of the concentration wave in the centre reached already the
concentrations of the equilibrium phases and a relatively stable spinodally decomposed
structure has been formed there. Later on the system decreases its free energy by
eliminating the first interfaces juts below the free surfaces (coarsening of the structure)
and as a results the surface structure makes a sudden “reversal”. This means that a
morphology A/B...B/A develops with a small segregation of B atoms on the surfaces of
the A-rich phase. Although the surface energy of such a configuration should be larger
than that of a B-rich phase with a small desegregation of B atoms, the overall energy of
the system is decreased because of the gain due to the disappearance of two internal
interfaces.

For the illustration of the effect of the slab thickness, d, Figs. 4a and 4b show
the situation for 7 atomic planes. It can be seen that the system arrives at a B/A/B
morphology with B rich segregated layers. This is so because, due to the small slab
thickness, there are not enough B atoms in the centre to supply the growth of the
spinodal wave up to the level of the miscibility gap, and thus the formation of the B-rich
phase is not possible there. Thus there exist a critical thickness, d., below which the
“reversal” of the surface structure does not take place.

Again we checked that — as before — (see Figs. 3b and 4b) the result are the
same for the exchange model or using one or three initial empty planes.

It is worth to note this type of behaviour is typical only in weakly segregating
systems. Indeed in Fig. 2a, 2b, for the strongly segregating system, the surface
configuration is very stable and there is no way for the reversal of the configuration. It
was also shown by Beke et al. [2] that in this case - if the spinodal wave became
“stronger” - there was only a breaking point between the spinodal wave and the surface
profile developed at the very early stage of the process.

The observed reversal thus is an inherent property of the weakly segregating
system, and the characteristic time evolution of the surface concentration (first there is
an increase and then there is a fast decrease of the B atoms at the surface, as well as the
existence of a critical slab thickness, d., below which this is not observed anymore)
seems to be observable experimentally in thin film samples.
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Figure 3. Time evolution of composition in a FCC (111) structure without (a) and with vacancies (b) (19
alomic planes and 1 initial empty plane on the surfaces). Increasing numbers at the curves
indicate the time sequence. Dashed line with open circles denotes the vacancy distribution in the
latest state.
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Figure 4.

Time evolution of composition in a FCC (111) structure of 9 atomic planes with vacancies: (a) |
initial empty planes on the surfaces; (b) 3 initial empty planes at the surfaces. Increasing
numbers at the curves indicate the time sequence. Dashed line with open circles dencies the
vacancy distribution in the latest state.
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Conclusions

We have shown that the generalized Martin’s kinetic deterministic equations for
vacancy mechanism are capable to describe the solid-vapour equilibrium in bath pure or
binary solid solution systems. The correct equilibrium values of vacancies are already
reproduced by taking only one additional initially empty plane at the surface, although
the “solid-vapour” interface is about two atomic planes thick.

Furthermore the model gave the same kinetics in initially homogeneous, fifty-
fifty spinodal systems for the process leading to the phase separated and surface
segregated state independently whether the mechanism of diffusion is a direct exchange
of atoms or a vacancy mediated mechanism. We have shown that in weakly segregating
systems, above a certain critical slab thickness, an interesting reversal takes place i.e.
first there is an increase which is followed by a fast decrease of the B atoms at the
surface. On the other hand in slabs with d<d, — due to a special size effect — this reversal
can not take place.
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