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tive diffusion.
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1. Introduction

In established computational approaches to the diffusional pro-
cesses of phase separation or interreaction, it is common practice
to describe the appearing phase boundaries by some kind of divid-
ing interfaces. The fluxes to both sides of the interface are evalu-
ated in a dedicated manner to predict the migration of the
boundary and so to allow the book-keeping of its momentary posi-
tion, see e.g. [1] or [2]. In a recent work [3], we used an alternative
concept of simulating reactive diffusion that avoided the men-
tioned book-keeping of the interfaces. Based on the appropriate
thermodynamic driving forces, expressed by correct thermody-
namic factors of chemical potentials, the algorithm predicts the
phase transformations automatically, a concept that has been
already discussed earlier [4]. But in contrast to this earlier report,
now phase boundaries are not assigned to dividing interfaces any-
more, but are simply related to volume slabs revealing a composi-
tion inside the forbidden concentration range of the two-phase
regions. At first sight, this concept appears to be just a formal com-
putational trick. However, focusing on nanodevices, it may even
become the more realistic picture. A phase boundary cannot be
infinitely sharp but may have a thickness of about a nanometer
at least. So, the interface-related volume becomes significant in
comparison to the total volume of a nanodevice.
In this article we develop and demonstrate how to describe the
transition from linear to parabolic kinetics within the proposed
computational concept. In phenomenological understanding of
phase growth by solid state reaction, it is usually supposed that
transfer of atoms through phase boundaries is hindered by differ-
ent reasons. Whatever the reason is, extra potential barriers are
supposed to be present at the phase boundaries which slow down
the atomic transport [5,6]. Introduced as a concept of describing
the kinetics of gas reactions, such as oxidation [7], the concept of
linear growth was transferred to solid state reactions whenever a
kinetic control by the interfaces had to be presumed [8,9]. While
to the best of our knowledge no clear and undisputed case of linear
interdiffusion kinetics has been reported for the reaction of pure
metals (perhaps [10]), apparently clear experimental confirma-
tions do exist for silicide reactions, e.g. [11–14]. A. Gusak [15]
has presented arguments that a linear kinetic regime can hardly
be observed in metallic thin films, provided sufficiently efficient
vacancy sinks and sources. However, he also showed that non-
equilibrium vacancies, eventually also other point defects, could
force a significant linear regime at the transition between the early
slow Nernst � Planck interdiffusion stage and the later fast Darken
interdiffusion. So, the concept of linear growth seems to be rele-
vant, even more so as it finds renewed interest in recent work on
reactive diffusion in nanowires [16].

Our article is structured as follows. First, the basic concept of
the suggested transport simulation is summarized. Then, in order
to check its quantitative correctness, we derive an independent
analytical solution of the reactive diffusion problem that can be
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applied to any arbitrary binary phase diagrams. A comparison with
this innovative analytical solution confirms the validity of the
kinetic simulation. But it also demonstrates deviations in early
stages which gives rise to the main aim of this article, the modifi-
cation of the kinetic concept to even simulate the effect of barriers
at interfaces. Quantitative accuracy of this modification is demon-
strated by comparison with the approximate description by Deal
and Grove [7]. Finally, we demonstrate the flexible use of the sim-
ulation in describing complex cases comprising different relevant
interfaces.

2. Basic equations of the kinetic simulation model

The following basic equations for numerical simulation were
derived in Ref. [3] in the context of studying elastic stress and plas-
tic relaxation in core shell nanostructures. For clarity, we repeat
them here in a reduced form that is sufficient to describe the
atomic transport by a vacancy mechanism, but disregarding the
influence of mechanical forces.

2.1. Continuum equations of atomic transport

In order to calculate the change of composition in time and
space by vacancy mediated diffusion, the equation

Dci
Dt

¼ � 1
q
r0 ji

!
�cisv for i ¼ 1; . . . ;n; ð1Þ

is used for all n atomic components. The differential D=Dt is known
as the substantial (or material) derivative. It gives the rate of change
of any scalar quantity seen at a point which follows the motion of

the material coordinate system. Moreover ji
!

is the flux of compo-
nent i;q is the total material density (number of lattice sites per vol-
ume), ci is the atomic fraction of component i; r0 indicates the
divergent calculated in the material coordinate system (see e.g.
[3]), and sv gives the rate of change of the atomic fraction of vacan-
cies due to creation/annihilation.

The total material density can be calculated from the partial
material densities of the components i (qi) and that of the vacan-
cies (qv): q ¼Pn

i¼1qi þ qv . Consequently, atomic fractions are
related to the material densities by

ci ¼ qi

q
for i ¼ 1; . . . ;n and i ¼ v : ð2Þ

In turn, the total density q can also be expressed in terms of partial
atomic volumes

q ¼ 1Pn
i¼1ciXi þ cvXv

: ð3Þ

The rate of vacancy creation/annihilation at a source/sink is consid-
ered to be proportional to the deviation of the current fraction of
vacancies from the equilibrium one

sv ¼ Krate c0v � cv
� �

; ð4Þ
where the rate coefficient Krate determines the effectiveness of sinks
and sources. We emphasise that Krate is not necessarily a constant
but may vary, for instance, with spatial coordinates depending on
the spatial distribution of the sinks and sources [17]. Note that
other expression for sv can be also used. See for instance in
[18,19]. However, the present work is not intended to investigate
the role of the different expressions for sv .

In the case of a vacancy diffusion mechanism, the flux of com-
ponent i can be written as [3,20]

ji
!
¼ �qDi

kT
cvci r0li �r0lv

� �
for i ¼ 1; . . . ;n; ð5Þ
in which we have conveniently defined Di ¼ D�
i =c

0
v , with D�

i being
the tracer diffusion coefficient of the chemical component i
[3,21]; k and T are Botzmann’s constant and the absolute tempera-
ture. Furthermore, li and lv are chemical potentials of component i
and of the vacancy.

For the remaining of this article, we restrict to binary A-B alloys.
If local equilibrium is fulfilled, the chemical potentials behave con-
tinuous. In this case Eq. (5) may also be expressed as

ji
!
¼ �qDi Hicvr0ci �Hvcir0cv

� �
for i ¼ A;B ð6Þ

with the usual thermodynamic factors HA ¼ ð@lA=@ ln cAÞ=kT ¼ HB.
It should be emphasized that Eqs. (5) and (6) are mathematically
equivalent for a binary system. Therefore, in contrast to a recent cri-
tizism [22,23], it is always possible to derive suitable discretisation
schemes for both variants so that identical results are achieved in
numerical calculation.

If vacancy sinks and sources are so efficient that vacancy equi-
librium holds (usually assumed for macroscopic systems), both
variants of the transport equation may be further simplified:

ji
!
¼ �qD�

i

kT
cir0li ¼ �qD�

iHir0ci; for i ¼ A;B ð7Þ

and the sink term in Eq. (1) is neglected. Furthermore, mixing of the
two components in the laboratory reference frame can then be

described by a single exchange flux ~j :¼ jA � cðjA þ jBÞ Here and in
the following c shall denote the atomic fraction of component A.
The relevant driving force becomes the exchange potential
~l :¼ lA � lB so that the appropriate transport equation reads

~j ¼ q
eD
kT

cð1� cÞr~l; ð8Þ

with the interdiffusion coefficient

eDðcÞ ¼ D�
Að1� cÞ þ D�

Bc: ð9Þ
2.2. Chemical driving forces

As a demonstration example, we consider a binary A-B systems
that forms a single intermetallic phase, which stands in equilib-
rium to ideal solid solutions at both terminating sides of the phase
diagram.

The Gibbs energy of mixing of an ideal binary solid solution (SS)
is natural, while the Gibbs energy of the intermetallic phase (IM)
shall be approximated by a second order polynomial, so

gSS ¼ kT c ln c þ 1� cð Þ ln 1� cð Þ½ �;
gIM ¼ �g0 þ V c � cmð Þ2: ð10Þ

Here cm denotes the stoichiometric concentration of component A
in the intermetallic phase, and g0 and V are parameters by which
the existence range of the intermetallic phase can be adjusted.

With this, the chemical potentials of component A for the solid
solution and the intermetallic phases are

lSS
A ¼ kT ln c;

lIM
A ¼ �g0 þ V �c2 þ c2m þ 2c � 2cm

� �
: ð11Þ

As in the composition range 0 . . . c1 the solid solution is stable,
the chemical potential is calculated from lSS

A ; in the range
c2 . . . c3, the intermetallic compound is the stable phase, so l is cal-
culated from lIM

A ; and in the range c4 . . .1, it is calculated again
from lSS

A . In the two-phase ranges c1 . . . c2 and c3 . . . c4, the chemical
potential remains constant and equals to lAðc1Þ and lAðc3Þ calcu-
lated form either lSS

A or lIM
A (for the definition of the boundary con-
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Fig. 1. Thermodynamic driving forces of assumed symmetric phase diagram comprising an AB compound (a) and of an asymmetric phase diagram with an A2B compound (b).
Upper panels show the Gibbs potentials of the phases, lower panels the respective exchange (interdiffusion) potential and the thermodynamic factor. c1 to c4 denote
equilibrium compositions of the phase boundaries. (Parameters for the AB compound: cm ¼ 0:500, g0=kT ¼ 1:2 and V=kT ¼ 10, for the A2B compound: cm ¼ 0:333, g0=kT ¼ 0:8
and V=kT ¼ 10).
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centrations c1 to c4 see Fig. 1. Equivalently, we may set in the two-
phase ranges the thermodynamic factor HA ¼ 0. The analogous
considerations hold for component B.

We will perform calculations for two cases, a symmetric and an
asymmetric phase diagram as shown in Fig. 1(a,b). For both the
Gibbs potentials, the exchange potential, and the thermodynamic
factor are presented. Respective parameters used in Eq. (10) are
stated in the figure caption.

The equations given in Sections 2.1 and 2.2 fully describe the
kinetic model used for simulation. (Further technical information
on the numerical implementation is summarized in Appendix A.)
It must be pointed out that the modelling avoids any predefined
interfaces of which the positions have to be tracked and at which
the equilibrium conditions are maintained by a particular treat-
ment. All required physical information is contained in the compo-
sition dependence of the chemical potentials or thermodynamic
factors together with the composition dependence of the intrinsic
diffusion coefficients. Interfaces are simply identified by a local
composition falling into the two-phase regions, and are conse-
quently marked by constant chemical potentials respectively a
vanishing thermodynamic factor.
3. Analytical solution of the reactive diffusion problem

Since the simulation algorithm outlined in Section 2 was
recently criticised for failing even in prediction of simple parabolic
growth [22,23], a demonstration of its accuracy is required. To this
aim, we need an alternative analytical solution of the binary reac-
tive diffusion problem, to which we could compare the results of
the kinetic simulation. Often, the rate of compound growth in reac-
tive diffusion is estimated on the assumption of a linear concentra-
tion profile and a constant flux across the forming intermetallic
layer (see e.g. [24,15]). With this, the temporal evolution of the
compound layer width w is predicted as
w
dw
dt

¼ eD c3 � c2
c4 � c3

þ c3 � c2
c2 � c1

� �
: ð12Þ

(The boundary compositions ci are assigned as in Fig. 1 and eD rep-
resents an average interdiffusion coefficient of the intermetallic
phase.)

In steady state of transport however, not both current and gra-
dient of concentration can be constant. Therefore, Eq. (12) only
represents a rough estimate. In the following, we derive therefore
an exact analytical solution to predict the composition profile for
any arbitrary binary phase diagram and concentration dependence
of the chemical interdiffusion coefficient.

We start from the known fact of general parabolic growth in the
diffusion zone. Therefore, conservation of matter requires

@c
@t

¼ � x
2t

� @c
@x

¼ � 1
q

@~j
@x

; ð13Þ

if the origin of the space coordinate x is located at the Matano plane.

Multiplying by eDðcÞ and obeying Fick’s first law (~j ¼ �qeDð@c=@xÞ),
we find from Eq. (13)

eDðcÞ @~j
@x

¼ � x
2t

~j: ð14Þ

If here eD were constant, a simple Gaussian solved Eq. (14):

~jðxÞ ¼ jM exp � x2

4eDt
� �

; ð15Þ

which represents nothing else than the well-known error-function-
shaped diffusion profile. Guided by this observation, we define for

the case of a composition dependent eDðcÞ a new depth coordinate
u by

udu :¼ xeDðcÞdx ð16Þ
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while keeping the origin at the Matano plane uðx ¼ 0Þ ¼ 0. The
advantage of this new coordinate becomes obvious in noting by
combination of Eqs. (13) and (16), and Fick’s first law

@~j
@u

¼ u
x
eD @~j
@x

¼ u
x
eD x
2t

@c
@x

¼ � u
2t

~j: ð17Þ

Obviously, as a function of the new coordinate u, the flux becomes
Gaussian-shaped again

j
�
ðuÞ ¼ jM � exp �u2

4t

� �
: ð18Þ

So, beginning from the Matano plane (x ¼ u ¼ 0; c ¼ cM; ~j ¼ jM), we
may calculate the concentration profile at given time by simultane-
ous integration of

du ¼ x
u
dxeD ¼ x

u
dx
dc

dceD ¼ x

u~jðuÞ
dc ð19Þ

dx ¼ @x
@c

dc ¼
eDðcÞ
~jðuÞ

dc ð20Þ

with regard to Eq. (18). (Details on the implementation by the
‘‘shooting” method to solve a boundary value problem are detailed
in Appendix B.)

4. Check of the quantitative accuracy of the kinetic simulation

To demonstrate the quantitative correctness of the simulation
concept, we consider interdiffusion in binary systems based on
the Gibbs potentials shown in Fig. 1. Partial diffusion coefficients
and atomic volumes are assumed being equal for both compo-
nents. Thus, the vacancy density is in equilibrium and the calcula-
tion can be handled on a fixed periodic discretisation grid of
spacing a0. We emphasise, these assumptions are not required
for the concept to work. The use of composition dependent partial
diffusion coefficients and non-uniform distribution of vacancy
sinks and sources were already demonstrated in this model
[17,25]. The simpler assumptions here, though, make the quantita-
tive evaluation possible throughout this work. We simulate the
evolution of 1D diffusion profiles by the kinetic equations pre-
sented in Section 2 (Eq. (7)) and determine the width of the inter-
metallic product as a function of time. Then, we compare with the
exact analytic solution according to Section 3.

Exemplary results of such comparison are presented in Fig. 2,
data points stem from the kinetic simulation, lines from the analyt-
ical calculation. Obviously, the concentration profiles match per-
fectly, only with exception of the grid points directly at the
phase boundaries.

A detailed quantitative evaluation is presented in Fig. 3. Partial
figure (a) shows the width of the intermetallic compound as a
function of time, data points stem from the kinetic simulation,
dashed lines from the analytical solution. Both are in perfect agree-
ment, if the width of the intermetallic compound exceeds about 20
units of the simulation grid (a0). Note, there is no free fitting
parameter to match both models. The kinetic simulation concept
reproduces the expected parabolic growth with correct absolute
growth rate for the symmetric AB and the asymmetric A2B com-
pound as well and so is well confirmed.

On the other hand, Fig. 3(a) makes it obvious that the growth
rate predicted by the kinetic simulation falls short of the expected
parabolic one, if the compound layers are very thin. Similarly the
equilibrium boundary concentrations are not established for rather
thin layers as demonstrated in Fig. 3(b). Since this behaviour
resembles to the physical feature of a transport barrier at the inter-
faces, we investigate in the following, whether we can turn this
apparent shortcoming of the kinetic model even into an advantage.
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To this aim, we first remind to the concept of interfacial transport
barriers and the linear–to–parabolic transition in layer growth.
Afterwards we generalize the simulation tool accordingly.

5. Linear-parabolic transition in kinetics of layer growth

5.1. Phenomenological approach

One of the earliest and most accepted descriptions of the
growth of a reaction product was early proposed by Deal and Grove
for the case of the oxidation of Si [7]. They supposed that the flux
across a phase boundary is proportional to the difference between
the actual and equilibrium concentrations at the phase boundaries.
Moreover, they assumed the flux being constant inside the growing
phase. Following the arguing in Section 3, the latter can be valid
only for a strict line compound.

We consider a growing compound layer embedded between
two terminating solutions of the respective equilibrium composi-
tions (c1; c4). The relevant driving forces are illustrated by the
sketch of Fig. 4. Obviously, the total driving force for diffusion
across the intermetallic layer (D~lD) is reduced from its equilibrium
value by dissipative loss at the interfaces (D~ll and D~lr):

D~lD ¼ D~leq � D~ll þ D~lrð Þ: ð21Þ
Following Deal and Grove, the compound should have a rather nar-
row existence range so that the flux within the intermetallic is prac-
tically homogeneous (c2 � c3 �: cI). This leads to the exchange
fluxes

j
�
l ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð1� c1Þc2ð1� c2Þ

p
� jl

Dl
�
l

kT

j
�
D ¼ qcIð1� cIÞ Dw

Dl
�
D

kT

j
�
r ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3ð1� c3Þc4ð1� c4Þ

p
� jr

Dl
�
r

kT

ð22Þ

through the left boundary, across the intermetallic phase, and
through the right boundary, respectively. jl and jr are defined here
in analogy to the diffusion coefficient. They quantify the exchange
flux between A and B atoms but exclude thermodynamic factors
except configurational entropy (as D, also jl and jr may depend
on composition). In bulk diffusion, the local compositions before
and after a jump remain practically the same, which leads to the
concentration prefactor cð1� cÞ, well known in the formulation of
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Fig. 4. Schematic interdiffusion potentials across the diffusion zone for the case of
unlimited fast interfacial transport (solid line) and the case of interface control
(dashed). The compositions of the terminating solutions are assumed to match the
respective equilibrium value c1 and c4. So deviation from equilibrium appears only
inside the compound. Total driving force Dleq and the losses at the interfaces (Dll ,
Dlr) are also indicated.
interdiffusion flux (e.g. Eq. (8)). At the interfaces however, the con-
centrations on both sides may differ considerably which raises the
question how to average the concentration factors appropriately.
The first and the third equation make use of the geometric mean,
which is justified in the appendix (Appendix C).

After a sufficient transient period, the three fluxes in Eq. (22)

must become identical (~jl ¼ ~jD ¼ ~jr ¼ ~j). By evaluating Eq. (22), we
receive for this steady flux

~j ¼ qcIð1� cIÞ D
wþ D

jeff

D~leq

kT
; ð23Þ

in which the effective barrier coefficient

1
jeff

:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cIð1� cIÞ
c1ð1� c1Þ

s
1
jl

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cIð1� cIÞ
c4ð1� c4Þ

s
1
jr

ð24Þ

has been defined as a convenient abbreviation. The atomic trans-
port leads to the growth of the intermetallic layer

dw
dt

¼ 1
c2 � c1

þ 1
c4 � c3

� � ~j
q

ð25Þ

¼ cIð1� cIÞ
c2 � c1

þ cIð1� cIÞ
c4 � c3

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼c

� D
wþ D

jeff

� D~leq

kT
ð26Þ

which is integrated to

t ¼ 1
2cD

kT

Dl
�
eq

w2 þ 1
cjeff

kT

Dl
�
eq

w ¼: A �w2 þ B �w ð27Þ

to predict the temporal evolution of the layer thickness. The numer-
ical factor c is close to one (exactly one for a strict line compound
between pure phases). Although not accurate in quantitative pre-
diction, the Deal-Grove model clarifies the essential general fea-
tures: Interfacial barriers (i) slow down the growth and (ii) they
introduce a linear regime in the growth kinetics which dominates
the initial stages of reaction.

5.2. Treating interfacial barriers by the kinetic simulation

Due to its transparent concept, the kinetic algorithm outlined in
Section 2 can easily be extended to include the effect of extra inter-
facial barriers. In the simulated composition profiles, the inter-
phase boundaries are usually reflected by a single slab with a
concentration inside the ‘prohibited’ two-phase range (see Fig. 2).
So in fact, we just have to reduce diffusion into and out of this slab
by a certain factor to slow down the transport through the inter-
face. Accordingly, Eq. (6) is modified to

ji
!
¼ �qFDici

cv
kT

r0li �r0cv

 �

for i ¼ 1; . . . ;n and i ¼ v ; ð28Þ

in which the factor F equals one inside the phases but is consider-
ably less in the ’prohibited’ concentration ranges. In the generic case
of vacancy equilibrium, the latter simplifies to

ji
!
¼ �qFD�

i
ci
kT

r0li for i ¼ 1; . . . ;n: ð29Þ

(Since interfacial barriers prevent local equilibrium, we have to
make use in this case of the chemical potentials rather than the
thermodynamic factor, even for a binary system.)

6. Validation of the approach to linear kinetics

Let us check whether the simulation tool so describes a linear-
to-parabolic transition in an appropriate manner. We simulate
growth for symmetric phase diagrams as in Fig. 1(a). To simplify
the quantitative discussion, we matched the initial compositions



(a)

1 10 100 1000

0.07

0.08

0.09

0.10

V=500 kT

V=20 kT

V=10 kT

V=500 kT

V=20 kT

pa
ra

bo
lic

gr
ow

th
co

ef
fic

ie
nt

A
[1

/D
]

deceleration factor 1/F

V=10 kT

Deal-Grove
prediction

(b)

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

V=500kT V=20kT

lin
ea

rg
ro

w
th

co
ef

fic
ie

nt
B

[a
0/D

]

deceleration factor 1/F

V=10kT

Fig. 6. Evaluation of simulated layer growth on the basis of symmetric phase
diagrams with varying stability of the intermetallic. Data points in (a) represent the
results for the ‘‘A” parameter (points in light grey are not reliable due to too small
parabolic contribution to the kinetics). For comparison dashed lines represent
prediction by Eq. (30). Predictions by the Deal-Grove model (solid lines) are shown
on the left. Data points in (b) represent simulation results for the ‘‘B” parameter.
Dashed lines were calculated by Eq. (33).

cA

cI

Matano
plane

Mj

188 J.J. Tomán et al. / Computational Materials Science 138 (2017) 183–191
of the reaction couples to the respective equilibrium concentra-
tions of the terminating phases (c1; c4). In a first calculation, the
interaction parameter was increased to V ¼ 500 kT to approximate
a real line compound (remaining existence range of 0.44 at.%).
Identical partial diffusion coefficients and atomic volumes were
chosen for both components so that the calculation made use of
Eq. (29).

Fig. 5 presents the calculated layer thickness versus diffusion
time for different values of the F parameter as stated in the figure.
In this double logarithmic plot, the slope clearly identifies the tran-
sition from a linear to the parabolic regime. Furthermore, by
decreasing F (from F ¼ 1 down to F ¼ 0:001), the linear regime
extends to later stages and the overall growth rate gets reduced.
Obviously, the proposed interfacial deceleration factor provides
an efficient control of the growth. To demonstrate its quantitative
suitability, we evaluate the evolution of the reaction product in
terms of the parabolic and linear contributions in Eq. (27). The
respective coefficients A and B are determined in dependence on
the parameters F and V by fitting Eq. (27) to the simulated phase
width.

Results are shown in Fig. 6(a) and (b), respectively. By variation
of the curvature of the Gibbs potential (V ¼ 10 kT; 20 kT or
500 kT), the composition range of the intermetallic compound is
adjusted (Dc ¼ 25:9 at.%, 11.8 at.%, or 0.44 at.%, respectively).

The ‘‘A” parameter characterizes the diffusional growth of the
intermetallic product at late stages when growth is controlled by
volume transport. So, no surprise that it is not effected by the dece-
laration factor at the interface. This is fully confirmed by the data
presented in Fig. 6 (a). Except those points that could not be reli-
ably determined because of a too short parabolic regime (light
grey), the data points fall on plateaus that only depend on the
underlying phase diagram but not on the F parameter.

An attempt to understand the plateau levels by the Deal-Grove
expression Eq. (27) is enlightening. Only for the line compound
(V ¼ 500 kT) the agreement is satisfying (see solid lines at left
hand side of Fig. 6(a)) while significant discrepancy appears for
the smaller V. This discrepancy does not represent a failure of the
proposed simulation algorithm. It is due to the fact that the Deal-
Grove model neglects the variation of the flux across the inter-
metallic layer. By contrast, a more accurate calculation of the reac-
tion thickness is achieved via the flux at the Matano plane, as
illustrated in Fig. 7. Integration of the Matano flux jM on time
equals the total amount of exchanged atoms (material transported
from the dark grey region to the light grey region) and thus defines
the thickness of the diffusion zone. In very good approximation on
Fig. 2 concentration varies linearly across the intermetallic layer so
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that the light grey area is given by ððc2 � c1Þ þ ðcI � c1ÞÞw=4
(assuming c1 ¼ c1). Thus, on the one hand the Matano flux equals

~jMðtÞ ¼ q
ðcI � c1Þ þ ðc2 � c1Þ

4
� dw
dt

ð30Þ

and on the other, Ficks law requires

~jM ¼ qcIð1� cIÞ Dw
Dleq:

kT
: ð31Þ
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Combining the latter two equations leads to the prediction of
‘‘A”

A ¼ 1
2w

dt
dw

¼ cI þ c2 � 2c1
8cIð1� cIÞ

1
D

kT
Dleq:

: ð32Þ

The latter expression for the parameter ‘‘A” is different from that
stated in Eq. (27). As expected, both become equal only in the limit
c2 ¼ c3 ¼ cI. Eq. (32) decribes the plateaus in Fig. 6 already reason-
ably well. (a careful investigation of the analytical expressions in
Section 3 reveals a weak S-shaped curvature of the concentration
profiles as illustrated (exaggerated) by the dashed line in Fig. 7. This
leads to an increase of jM of up to 3%. Taking this into account, the
values of the parabolic growth parameter ‘‘A” derived from the sim-
ulation match perfectly the theoretical expectation of Eq. (30), see
dashed lines in the figure).

Quantitative results of the ‘‘B” parameter are presented in Fig. 6
(b). It obviously scales perfectly proportional to 1=F for all studied
phase diagrams. The variation of the slope dB=dð1=FÞwith the ther-
modynamic stability of the intermetallic phases (V parameter) is
naturally expected, as Eq. (27) suggests

B ¼ 1
cjeff

� kT
D~leq

ð33Þ

Since D~leq scales inversely with V (5:18 kT;4:72 kT, and 4:39 kT at
V ¼ 10 kT; 20 kT, and 500 kT, respectively), the observed increase
of the slope with V is already understood. Beside the direct depen-
dence on D ~leq there is also an implicit dependence of jeff on the
phase boundary concentrations:

jeff ¼ 2�cI�c�ð Þ cIþc�ð Þ
8 cIð1�cIÞ

FD
a0
;

with c� ¼ ðc1 þ c2Þ=2
ð34Þ

The ‘‘B” parameters so predicted by combination of Eqs. (33) and
(34) are presented as dashed lines in Fig. 6(b). They are in convinc-
ing agreement with the simulated data points. It should be noted
that the composition dependence of jeff stated in Eq. (34) is related
to the actual implementation of the simulation algorithm (see
Appendix A).
7. An example: Asymmetric arrangement of barriers

Up to now, we considered only situations that could be also
understood by phenomenological equations and so to allow the
validation of the suggested simulation approach. The kinetic mod-
elling however can handle also complex cases for which the formu-
lation of phenomenological rate equations becomes difficult or
even impossible, e.g. situations with many different intermetallic
phases, three dimensional geometries, or non-equilibrium vacan-
cies. As a still transparent but already more complex example,
we present a set of simulations for the asymmetric phase diagram
shown in Fig. 1(b). Since the nature of the interfaces between dif-
ferent phases can be quite different, we may also expect different
kinetic barriers. We compare simulations of layer growth, in which
either identical barriers at both interfaces, only one barrier at the
left or at the right interface, or no barrier at all were present. In
all four cases the composition of the reacting materials were fixed
to the equilibrium concentrations (c1; c4).

Results are shown in Fig. 8. In the latter case (no barriers),
exclusive parabolic growth is naturally expected. The other three
cases demonstrate a linear regime in the initial stages. The exten-
sions of these linear regimes however are quite different as well as
the corresponding growth constants. In particular, the simulation
demonstrates that the growth constants depend on whether posi-
tioning the single barrier at the left or the right interface, although
the thermodynamic driving force to form the compound is
identical.

A quantitative understanding of such phenomena by the Deal-
Grove concept is not possible anymore. But qualitative considera-
tions still indicate that the results of the simulation are physically
reasonable. Simulated composition profiles of the early linear
growth stage demonstrate that for the single barriers (partial
Fig. 8(b)), the respective composition of the initial compound is
driven fully to the respective opposite boundary, i.e. to high con-
centration (c3) when the barrier is positioned at the low concentra-
tion interface and vice versa. So in both cases, the full driving force
is available for the transport across the interface. Consequently, we
can estimate the relative growth rates based on the steady state
fluxes. The latter may be derived in analogy to Eq. (A.1) choosing
the appropriate cI � c2 � c3. This predicts the ratio between the
growth constants to be 0.813 (barrier at the left to barrier at the
right case) which has to be compared with the ratio 0.783 found
in the simulation (see Fig. 8). A satisfying agreement. (The remain-
ing discrepancy is probably explained by additional curvatures of
the composition profiles that are neglected in the estimate but
clearly seen in the simulated profiles.).
8. Conclusions

A transparent computational concept of simulating phase for-
mation by reactive diffusion has been presented that does not
require pre-defined interfaces to characterize a heterogeneous
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microstructure. The equilibrium phases form automatically —via
the composition-dependent chemical potentials or appropriate
thermodynamic factors. Interfaces are simply marked by a compo-
sition inside the thermodynamically ’forbidden’ two-phase range.
In this work, we validated this concept and extended it so to also
describe the effect of interfacial transport barriers.

� To enable a quantitative check, a new analytical transformation
of the Fickian equations for interdiffusion couples was derived,
that allows treating arbitrary composition-dependent chemical
diffusivity as a free input parameter and so can easily be
adapted to any binary phase diagram.

� The direct comparison with exact analytical solutions of the
reactive diffusion problem in layer geometry confirmed the
quantitative correctness of the simulation concept. The pre-
dicted absolute thicknesses of the intermediate product layers
are in agreement with the analytical description to very high
precision.

� By assigning formally a reduced diffusion coefficient to the ‘for-
bidden’ two-phase composition ranges of the phase diagram,
the kinetic simulation concept fully reproduces the physical
features of interfacial transport barriers. The demonstrated
inverse proportionality of the reduction factor to the phe-
nomenological barrier coefficient allows a transparent scaling
of the barrier effect.

� The quantitative correlation between the reduction factor and
the simulated linear growth rate has been established.
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Appendix A. Implementation of the simulation algorithm

The model summarized in Section 2 together with the assump-
tions of equal partial volumes and partial diffusion coefficients of
the two species, direct atom exchange, planar geometry, and a con-
stant slab thickness in discretisation lead to the technical proce-
dure used in this work. Local concentrations and chemical
potentials are assigned to the slabs, while the diffusion coefficients
and currents, as joined properties of two neighboured slabs, are
assigned to the interfaces inbetween.

Before starting the simulation, we tabulate the chemical
exchange potential on the basis of Section 2.2. The computational
cycle of the simulation then: (i) assigns the actual chemical poten-
tial according to the composition of the slab by interpolation of the
tabulated values; (ii) identifies slabs as interfacial ones by the
condition

c1 6 c½i� 6 c2 Or c3 6 c½i� 6 c4f g
At both sides of identified interface slabs, the deceleration factor is
set to the desired values i.e. F½i� ¼ F½iþ 1� ¼ F, else it is kept equal to
1; (iii) determines the flux between slabs ½i� 1� and ½i� by

cav ½i� ¼ c½i� 1� þ c½i�
2

~j½i� ¼ �qF½i�D�cav ½i� 1� cav ½i�ð Þ ~l½i� � ~l½i� 1�
a0

;

where a0 is the thickness of one slab; (iv) updates the compositions
according to

c½i�ðt þ dtÞ ¼ c½i�ðtÞ þ 1
q

~j½i� �~j½iþ 1�
a0

dt:

Composition was kept constant at the outer boundaries of the
simulated volume. This boundary condition, however, did not
become decisive as the calculated volume was always significantly
larger than the extension of the diffusion zone.

With these details of the algorithm, an understanding of the
interfacial flux and thus the j coefficient may be obtained: Compo-
sitions, assignment of chemical potentials, and fluxes at the (left)
interface are illustrated in Fig. A.9 for the described discretisation
scheme. The interface is marked by slab [i] with a concentration
within the two phase region. This intermediate composition is fluc-
tuating between c1 and c2. On statistical average, we set
c� ¼ ðc1 þ c2Þ=2. The chemical exchange potential is constant for
all concentrations in the range c1 to c2. So, a driving force only
develops by shifting the concentration of slab [i + 1] into the phase
field of the intermetallic. The maximum possible driving force (in
the case of symmetrical phase diagram with symmetrical barriers
D~leq=2) is established in the linear regime if c½iþ 1� ¼ cI . With this,
the flux into the interface slab is found as

~jl ¼ q
c� þ cI

2

� �
1� c� þ cI

2

� �
FD
a0

� D~leq

2kT
ðA:1Þ

The flux ji out of the interface slab is blocked, until the concentra-
tion inside the interface slab exceeds the boundary composition c2.
Appendix B. Integration of the analytical equations

The technical procedure of solving the analytical Eqs. (19) and
(20) in Section 3 shall be illustrated. Concentration cM and flux jM
at the Matano plane are first guessed and then iteratively refined
to match by integration of Eqs. (19) and (20) the correct terminat-
ing concentrations of the diffusion couple far from the Matano
plane (‘‘shooting” method to solve a boundary value problem).
The detailed steps: The composition-dependent chemical diffusion
coefficient has been tabulated. Beginning at the Matano plane, pos-
itive and negative halves of the composition profile are calculated
separately. The Matano plane be positioned at x ¼ u ¼ 0. Composi-
tion cM and composition gradient c0M at the Matano plane are intu-
itively guessed and a convenient composition increment Dc is
selected. We initialize the integration of the positive half with

x0 ¼ 0; u0 ¼ 0; c0 ¼ cM; c00 ¼ c0M;
~j0 ¼ eDðc0Þc00. Since Eq. (19) is
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undetermined at u ¼ 0, the first integration step is different from
the following ones. Here the first step is:

c1 ¼ c0 þ Dc

x1 ¼ Dc=c00
u1 ¼ Dc=ðc00 eD1=2ðc0ÞÞ ðcompare Eq: ð16ÞÞ

~j1 ¼ ~j0 � expð�u2
1=4tÞ

c01 ¼ j1=eDðc1Þ
and all subsequent integration steps are:

ciþ1 ¼ ci þ Dc

xiþ1 ¼ xi þ Dc=c01
uiþ1 ¼ ui þ ðxi=uiÞðDc=j1Þ

jiþ1 ¼ j0 expð�u2
iþ1=4tÞ

c0iþ1 ¼ jiþ1=D
�
ðciÞ

which are performed until the right boundary of the diffusion cou-
ple has been reached. The treatment of the negative half of the pro-
file follows by analogy. Then, the limit compositions far from the
Matano plane are compared with the desired boundary values.
Composition cM and composition gradient c0M at the Matano plane
are accordingly adjusted in further integration trials, until the
boundary conditions are matched at both sides of the diffusion
couple.

Appendix C. Justification of geometric average of composition
factors

The statistical concentration factors in the expressions of the
interface fluxes in Eq. (22) can be justified in the following way:
The Deal-Grove concept only considers exchange flux (vanishing
drift terms). The probability of an A-B exchange across the inter-
face must be proportional to the concentrations of the respective
species on both sides. Thus, assuming thermally activated jumps
over a barrier, we expect for the exchange flux of an A atom to
the right and a B atom to the left:

jA;B / c1 � exp EA
1 � EA

2

2kT

 !
� ð1� c2Þ � exp EB

2 � EB
1

2kT

 !

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 � c2

p � exp EA
1 þ kT ln c1 � EA

2 � kT ln c2
2kT

 !
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c1Þð1� c2Þ

p
� exp EB

2 þ kT lnð1� c2Þ � EB
1 � kT lnð1� c1Þ

2kT

 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð1� c1Þ � c2ð1� c2Þ

p
� exp lA

1 � lA
2 þ lB

2 � lB
1

2kT

� �
:

ðC:1Þ
Vice versa for the exchange of B to the right and A to the left:

jB;A / ð1� c1Þ � exp EB
1 � EB

2

2kBT

 !
� c2 � exp EA

2 � EA
2

2kT

 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð1� c1Þc2ð1� c2Þ

p
� exp lB

1 � lB
2 þ lA

2 � lA
1

2kT

� �
: ðC:2Þ

In these equations, the indexes i ¼ 1;2 stand for the right and left
side of the interface, respectively, while EA

i or EB
i denotes the respec-

tive site energy of species A or B. The saddle point energy is
assumed as Es ¼ DEþ ðE1 þ E2Þ=2 with a kinetic constant DE. The
balance of these partial fluxes yields the total exchange flux, which
reads

~j ¼ jA;B � jB;A

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð1� c1Þc2ð1� c2Þ

p
� exp

~l1 � ~l2

2kT

� �
� exp � ~l1 � ~l2

2kT

� �� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð1� c1Þc2ð1� c2Þ

p
� ~l1 � ~l2

kT

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð1� c1Þc2ð1� c2Þ

p
� D~l
kT

: ðC:3Þ

The last expression is the direct analog to the interface fluxes in
Eq. (22).
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