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Abstract 

 
It has been shown very recently that the diffusion non-linearity, due to the strong composition dependence of the 

diffusion coefficients, can lead to surprising effects on nanoscale: i) non parabolic shift of interfaces (both in ideal 
and phase separating systems), ii) sharpening of an initially diffuse interface in ideal systems. Some of these can not 
be interpreted even qualitatively from Fick�s classical equations. For instance the non-parabolic shift of an interface 
at the very beginning is a consequence of the violation of the classical Fick�s I. equation on the nanoscale and the 
transition from this to the classical parabolic behaviour depends on the strength of the non-linearity and the value of 
the solid solution parameter V (proportional to the heat of mixing). Experimental and theoretical efforts to explore 
the above phenomena are summarized in this paper.  
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1 Introduction 
 

Diffusion in nanostructures presents 
challenging features even if the role of 
structural defects (dislocations, phase- or 
grain-boundaries) can be neglected. This can 
be the case for diffusion in amorphous 
materials or in epitaxial, highly ideal thin 
films or multilayers where diffusion along 
short circuits can be ignored and �only� 
fundamental difficulties, related to nanoscale 
effects, raise. For example the continuum 
approach can not be automatically applied 
[1,2] and there is also a gradient energy 
correction to the driving force for diffusion. 
This correction becomes important if large 
changes in the concentration take place along 
distances comparable with a, and results in an 
additional term in the atomic flux, 
proportional to the third derivative of the 
concentration. It was shown recently in our 
group [1-15], that these effects can lead to 
unusual phenomena especially if there is a 
strong non-linearity in the problem i.e. if the 
diffusion coefficient has a strong 
concentration dependence.  

 
 

2 Basic equations  
 
 In order to have a general expression for the 
atomic fluxes, valid also on the nanaoscale, one 
has to choose a proper microscopic model. Let us 
start from a set of deterministic kinetic equations 
[1,2,4,5,16], obtained from the Martin�s model 
[17], in which the effect of the driving forces can 
be generally described by the �i/kT parameter 
present in the expression of atomic fluxes between 
the i-th and (i+1)-th atomic layers, perpendicular 
the x-axis; 
   
Ji,i+1= zv[�i,i+1ci(1-ci+1) - �i+1,i ci+1(1-ci)] = 

 =zv�i{ci(1-ci+1)exp(-�i/kT)-ci+1(1-ci)exp(�i/kT)}. 
 (1) 

 
In this exchange model �i,i+1 is the probability per 
unit time that an A atom in layer i exchanges its 
position with a B atom in the layer i+1. zv is the  
vertical coordination number and ci denotes the 
atomic fraction of A atoms on plane i. It is usually 
assumed [1,2,4,5,16] that the jump frequencies 
have Arhennius-type temperature dependence:    
 
 �i,i+1= �oexp[-Ei,i+1/kT]=�iexp[(-�i)/kT] ,  
   

(2) 
 �i+1,i= �oexp[-Ei+1,i/kT]=�iexp[(�i)/kT], 
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Figure 1: Concentration distributions at different 
times in Mo-V system ( m’ = 7.3) [8] at. 

with 
 
�i=�oexp[-(Eo-�i)/kT]= �oexp[�i/kT],     

  (3) 
 
where �o denotes the attempt frequency, k the 
Boltzmann constant, T the absolute temperature 
and Ei,i+1=Eo-�i+�i and Ei+1,i=Eo-�i-�i are the 
activation barriers (Eo is a composition 
independent constant including saddle point 
energy as well) which  must be chosen to fulfill 
the condition of detailed balance under steady 
state (Ji,i+1=Ji+1,i=�ci/�t=0). There are many choices 
of Ei,i+1, which fulfil this condition [17]. For 
instance the following choices  
 
�i=[zv(ci-1+ci+1+ci+ci+2)+zl(ci+ci+1)](VAA-VBB)/2 

    
(4) 

�i= [zv(ci-1+ci+1-ci-ci+2) + zl(ci-ci+1)]V,    
 (5) 

 
satisfy it [1,2], where Vij(<0) are the nearest 
neighbour pair interaction energies of ij  atomic 
pairs, zl is the lateral coordination number and 
V=VAB-(VAA+VBB)/2 is the solid solution 
parameter proportional to the heat of mixing. For 
phase separating systems V>0. The parameter 
M=mkT/2Z determines the strength of the 
composition dependence of the transition rates [6] 
in a homogeneous alloy. It can be estimated e.g. 
from the nearest neighbour pair interaction 
energies of ij atomic pairs, Vij, as M=(VAA-VBB)/2, 
or can be deduced from the composition 
dependence of the diffusion coefficients [8]: 
D(c)=D(0)exp(mc). For example m is about 10 as 
well as 16 in the Ni-Cu and Mo-V systems 
respectively, which corresponds to m�=mloge=4.5 
as well as 7 orders of magnitude change in the 
whole composition range.  
 From the rearrangement of  (1): 
 
j = aJi,i+1/� = 

= (D/a�){2cici+1) sinh (�i/kT) � 
- ci+1exp(�i/kT) + ciexp(-�i/kT)}, 

(6) 
 
can be obtained [7], where the notation 
D=zva

2�i for the diffusion coefficient has been 
introduced. 

It should be noted that � according to (4) - in 
general (i.e. in an inhomogeneous system) 

�i=M[c+(a/2)�2c/�x2] in �I or D. According to this 
the diffusion coefficient is not only (exponential) 
function of the composition, but depends on the 
second (or even on the fourth or higher) derivative 
as well, which can be important for large 
composition discontinuity (i.e. at the very 
beginning of the diffusional intermixing).     

It is important to emphasize that relation (6) (or 
(1)) is the general form of the expression of atomic 
flues, valid also on the nanoscale. From this one 
can get the well-known Fick I equation by making 
a Taylor series expansion of the composition up to 
the first order and for negligible driving forces 
(�i�0) [1,2,4]: 
 

j = -(D/�)gradc.      (7) 
 

Furthermore it can be shown that for �i/kT<<1  
� and using the relation [-ci-1-
3ci+1+3ci+ci+2]=a3�3c/�x3, obtained from the Taylor 
expansion of composition up to the third order 
and neglect already the second derivatives of 
composition in writing 2c(1-c)�[ci(1- ci+1)+ci+1(1-
ci)] � (6) leads to the classical Cahn-Hilliard type 
equation [1,2,4]. 

 
3 Results of simulations and experiments 

 
3.1 Homogenization starts with the shift of the 

interface 
It was obtained from simulations in [8] that in 
Mo/V multilayers, due to the strong concentration 
dependence of DMo=DV=D the interface between 

the Mo and V remains atomic sharp and shifts as a 
whole until the component with small D has not 
been consumed (Fig.1). It can also be seen that the 
diffusion is very asymmetrical: there is a fast 
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Figure 2: Auger depth profiles for the as-received 
and annealed (at 680 K for 100 h) amorphous Si/Ge 
multiplayer [9]. The Si content increases in Ge and 

the Si layer shrinks. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20
label of the lattice plane

at
om

ic
 f

ra
ct

io
n 

of
 N 0

90
250
300
350
360

Figure 3: Concentration profiles for Ni 
dissolution into 51 layers of Cu(111) (of 

which only 12 is shown here) for different 
times (given in special units [5]). 
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Figure 4:.a): Position of the interface versus 
time for the dissolution of 100 Ni layer into 

Cu(111) substrate (see also the text). b): 
Change of the Ni thickness at 679 K [5]. 

dissolution and diffusion of Mo into V, but there 
is no diffusion in Mo. This behaviour, as it is 
illustrated in Fig. 2, was indeed observed in 
amorphous Si/Ge system by Auger-depth profiling 
technique [9] (in both systems V�0.). This 

phenomena is surprising at first sight because 
form a naïve view of the Fick I relation one would 
expect flattening of the originally sharp interface. 
However, as it was illustrated in [9], this 
behaviour qualitatively follows already from this 
law as well if the strong composition dependence 
of D is taken into account (see also below). On the 
other hand this classical relation cannot predict a 
correct kinetics of the interface shift and only the 
simulations based on the atomistic approach gave 
results in accordance with the experiments.         
 
3.2. Non-parabolic shift of sharp interface in ideal 
systems  

The non-linearity (strong composition 
dependence of D) can lead to even more 
interesting results if we have dissolution of a thin 
film into a substrate [5]. Fig. 3. shows the results 
of simulations carried out for Ni dissolution into 
Cu (again the system is ideal, i.e. V=0). It can be 
seen that the dissolution starts at the interfacial 
layer, and until this is not consumed, the next 
layer remains complete. Thus the interface shifts 
step by step. This layer-by-layer dissolution takes 
place until the moving �interface� reaches the Ni 
layer just before the last. Then, due to the driving 
force for surface segregation, the intermixing will 
be continued by the saturation of Cu in the top 
layer and the change in the second layer will be 
retarded according to the segregation isotherm. 
The layer-by-layer dissolution � if the substrate is 

semi-infinite and the diffusion coefficient depends 
strongly on the concentration [5] � results in a 
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Figure 5: a): Calculated and the experimental initial 
values of the kinetic exponent versus V/kT for 

different m' values [10], and [11], respectively. b):  
Change of kc during dissolution (m'=7, V/kT=0.09). 
The more layers are dissolved the closer the value 

of kc to 0.5 is. 

 

a 

periodic behaviour as a function of time: each 
plane practically dissolves subsequently 
reproducing the same process. Therefore the 
average value of v should be constant, 
independent of time, and the interface shifts 
linearly with time, which is in contrast to the 
parabolic law (v � t-1/2) would be expected from a 
continuum model. Of course, after the dissolution 
of more and more layers one will have a transition 
to the parabolic dissolution. Obviously, this 
transition will depend on the value of m� [5]. Fig. 
4a. shows the position of the interface versus time, 
obtained from simulation for a semi-infinite 
Cu(111) substrate with 100 atomic layers of Ni. 
Due to the periodicity, mentioned above, the curve 
has periodic oscillations around the straight line 
fitted, but the slope of the straight line is 1±8�10-4, 
i.e. the average shift is indeed linear. It was also 
shown by simulations that already for 1000 atomic 
layers and at longer times the dissolution is indeed 
obeys the parabolic law [2,5].  

The above simulation result was confirmed [5] 
by measuring the kinetics of the Auger signals of 
Ni and Cu from the top of the 8 monolayer Ni. 
Fig. 4b. shows the final results for the average 
time evolution of the Ni thickness  versus time for 
679 K. It can be seen that n is indeed a linear 
function of time up to the second layer.  

The layered deterministic model properly takes 
care of the discreteness of the lattice, but the effect 
of fluctuations is not included. A more realistic 
description can be achieved with a detailed 
Monte-Carlo study. Indeed we have found from 
MC simulations [2,4], - similarly to the 
deterministic model - that the interface motion is 
proportional to time, in contrast to the square root 
dependence, expected from the continuum 
diffusion model. However, in contrast to the 
deterministic model, in the MC simulation the 
fluctuations led to a small broadening of the 
interface and this results in a smearing out of the 
oscillations of the interface velocity. The interface 
preserves its shape and in this way a nearly steady 
configuration is maintained during the dissolution 
and shift. 
 
3.3. Non-parabolic interface shift in phase 
separating system as well 

We have seen that the interface remained sharp 
on nanoscale and shifted linearly provided that the 
diffusion asymmetry was large (the diffusion was 
faster by several orders of magnitude in the 
substrate than in the deposit) in ideal systems. In 

phase separating systems � where the interface is 
sharp due to chemical reasons (phase separation) - 
it was obtained from previous computer 
simulations [18-20] that the interface displacement 
was proportional to the square root of the time. 
However, in these simulations the composition 
dependence of the diffusivity (diffusion 
asymmetry) was neglected. Thus it was very 
plausible to study the interplay of the diffusion 
asymmetry (composition dependence of diffusion 
coefficient) and the phase separation tendency 
(chemical effect) in the kinetics of the interface 
shift during dissolution in a binary system with 
restricted solubility. In [10] we have demonstrated 
by computer simulations (in fcc structure for 111 

plane; zl=6 and zv=3) how these parameters could 
influence the kinetics of the interface motion. 

The position of the interface was fixed to the 
plane with the composition 0.5 (it can obviously 
lie between two atomic planes as well). After 
determining this position, its logarithm versus the 

 

b
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logarithm of the time was plotted. Fitting a 
straight line to the data (which implies power law 

behaviour: ckty � ), its slope gave the power of 
the function describing the shift of the interface (it 
is called kinetic exponent and denoted by kc). 
Obviously for parabolic interface shift kc=0.5. 
Since we wanted to demonstrate the effects of the 
composition dependence of diffusion coefficients 
as well as the phase separation tendency on the 
kinetics of the interface shift, the parameters m' 
and V (or V/kT) were changed during the 
calculations. 

Figure 5a shows the initial values of the kinetic 
exponent, kc, (obtained by fitting to the interval 
corresponding to the dissolution of the first five 
atomic planes) versus V/kT for different m' values. 
It can be seen that kc is almost constant and, as it 
is expected, it is very close to 0.5 for small m' 
(week composition dependence of the diffusion 
coefficients). At the same time, the deviation from 
the square root kinetics increases with increasing 
m' for a fixed value of V/kT. The deviation from 
the parabolic law is again a real "nano-effect", 
because after dissolving a certain number of layers 
(long time or macroscopic limit), the interface 
shift returns to the parabolic behaviour 
independently of the input parameters (see Fig. 
5b). 

We have shown recently from UPS and XPS 
measurements [11] that during the dissolution of a 
3 nm thick Ni layer into single crystalline Au 
substrate, that the dissolution kinetics indeed 
deviates from the parabolic behaviour and the kc 
values obtained were very good agreement with 
those estimated from the m� and V/kT values (See 
Fig 5a where points with error bars show the 
experimental results.)    

 
3.4. Sharpening of an initially diffuse interface in 
ideal binary systems 

Another interesting feature obtained again by 
the same type of model calculations and also by 
Monte Carlo technique [12], is that an initially 
wide A/B interface can become sharp on 
nanoscale even in an ideal system. While such a 
process is obvious in an alloy with large 
miscibility gap (the metastable solid solution in 
the smeared interface region decomposes and a 
sharp interface is formed), it is surprising at first 
sight in systems with complete mutual solubility, 
because according to the macroscopic Fick I law 
the direction of the atomic flux is always opposite 
to the direction of the concentration gradient. 

Indeed, for composition independent D, the 
concentration profile will gradually decay and 
only a flattening of the (sharp or broadened) 
interface, produced experimentally, is generally 
expected. However, there is already a plausible 
interpretation for the interface sharpening � if the 
composition dependence if D is also taken into 
account � from the continuum Fick I law. If the 
concentration gradient is constant along the 
interface it is only D on which the absolute value 
of the atomic flux depends. Therefore the 'flux 
distribution' follows the D=D(c) function and thus 
even the continuum flux equation is capable to 
describe some sharpening (see Fig. 6). 

Obviously at longer annealing times - as it is 
expected from general thermodynamics - 
homogenization should take place. Indeed this is 
the case for the multilayer sample: although at the 
beginning the process decreases the gradient by 
filling up of the Cu layer with Ni (and not by 
flattening of the interface), the final state is the 
completely intermixed homogeneous alloy. For 
the case of semi-infinite geometry the first part of 
the intermixing (the initial sharpening and linear 
shift of the interface) will be extended to times 
under which the deposited film consumes. Of 
course for thick films, before reaching this stage, 
the kinetics of the dissolution will gradually 
change from linear to parabolic (as we have seen 
before), and this transition time will be determined 
by the ''strength'' of the concentration dependence 
of the diffusion coefficient, m�. For m�=0 the 
''normal'' intermixing with the formation of a 
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Figure 8: Calculated composition profiles at 
V/kT=0,09�0 (nearly ideal system) and m =-16,11 

for two different running times; a) t=t1 and b) 
t=67t1. It can be seen that, because of the large 

diffusion asymmetry (�m�is large), the upper part 
of interface remains sharp and shifts. The 

composition at the kink of the profile (denoted by 
c� in the text) slightly increases with time. The 
division of the composition profile into three 

regions is illustrated in a) and the composition of 
the plane belonging to the �interface� is denoted by 

ci in the text [15]. 

symmetrical diffusion profile will take place, 
while with increasing m� the diffusion profile will 
be more and more asymmetrical and finally the 
above discussed effects can be observed on 
nanoscale.   

It is important to note that m� is inversely 
proportional to the temperature (see the text below 
eq. (5)), and thus with decreasing temperature it is 
easy to reach those values for which the above 
non-linear effects can be observed. 
 Using the synchrotron facility in Berlin 
(Bessy), we could show experimentally the 
interface sharpening in Mo/V multilayer [14] by 
high angle X-ray diffraction measurements. The 
idea is that the high angle satellites bring 
information about the sharpness of the interfaces 
(which were produced artificially diffuse) and 
during a special heat treatment at gradually 
increasing temperatures the change of the 
interface thickness can be determined. As it is 
shown in Fig. 7 the interfaces indeed became 
sharper.       

 
3.5. What is the characteristic distance of the 
transition from the non-classical (non-parabolic) 
to the classical (parabolic) behaviour?  

As we have seen above for ideal [5] and phase 
separating systems [10,11] the m parameter 
(describing the composition dependence of the 
diffusion coefficient) and the solid solution 
parameter (proportional to the heat of mixing), V, 
control the above transition. Indeed, it was shown 
in [15] that such a characteristic thickness of the 

diffusion zone, Xc, can be determined. At Xc the 
atomic flux in the faster B-rich � phase J� 
(D�>>D�, where D� and D� denote the intrinsic 
diffusion coefficients in the � and the A-rich � 
phase, respectively) and the atomic flux across the 
�/� interface, JI, are equal to each other. For X<Xc 
the J� flux will be larger than JI, which in fact 
determines the diffusion permeability of the 
interface [15]: 

  JI=zv�i�c.      (8) 
 
Here �c=ci-ci+1=<c>-c�. <c> denotes the time 
averaged value of the composition just in the 

interface, ci during a layer-by-layer dissolution 
mode: each atomic plane dissolves subsequently � 
the dissolution of the next plane began only after 
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the complete dissolution of the pervious one �, 
reproducing the same process [5].  Furthermore, c� 
denotes the breaking point in the composition 
profile (for large V values it corresponds to the 
solubility limit) [15], as it is illustrated in Fig. 8. 
The idea of the derivation of a relation for Xc was 
simple: at very short times (small thicknesses of 
the diffusion zone) the finite permeability of the 
interface, determined by (8), will control the 
process (and e.g. assuming constant JI, the 
Stefan�s law leads to a constant velocity for the 
interface shit, i.e. the shift of the interface is 
linear), while for longer times, because the 
composition gradient gradually decays, J� will 
become less than JI, and the diffusion controls the 
further thickening of the diffusion zone.  Thus for 
J� the classical expression J�=-
(D/�)gradc�D�c�/X� was used with 
D�=zva

2�oexp(mc�/2).     
 Now it was obtained in [15] that for very 
asymmetric diffusion profile (which is the case 
here because of the strong composition 
dependence of D: see also Fig.8) Xc�X� and  
 
X�/a= 
={c�/�c}exp[(m/2)(c�-{zv/Z+(zl+zv)(<c>+c�}/Z})]exp(�i/kT). 
  

(9) 
 

 Positive values of V (or �i) led to a decrease of 
Xc as compared to the values obtained for the 
same m with V=0.  

Thus in [15] a natural resolution for a long-
standing paradox in diffusion has been offered. 
We have shown that the growth rate of the 
diffusion zone (reaction layer) should not go to 

infinity with decreasing time (as t/1 ), just 
because the diffusion permeability of the interface 
(being sharp either because of the presence of a 
miscibility gap, or because of the large diffusion 
asymmetry or because there is an abrupt jump of 
the composition in the diffusion couple at the 
beginning) is finite. It was found that Xc

 - 
depending on the phase separation tendency and 
the diffusion asymmetry (measured by the 
strength of the composition dependence of the 
diffusion coefficients) � lies between 0.05a and 
450a, illustrating that these effects are measurable 
on nanoscale. 

 
3.6. On the atomistic meaning of the interface 
transfer coefficient,  K.   

In order to illustrate the importance of this 
question let us cite the last sentences of H. 
Schmalzried from the epilogue of his book [21]: 
�We must remain aware, however, that the kinetic 
coefficients are ad hoc parameters, unless they can 
be derived from atomistic theory�.However, if 
the definition is correct and unique, one day we 
will have the unambiguous answer to the 
problem.�      

We have seen above that JI has the form of (8) 
and following the phenomenological definition of 
K: JI=K(ce-c) (c and ce denote  the current and the 
equilibrium composition at the interface, 
respectively) and taking ce=<c> and c�c�, It 
was shown in [15] that K�zv�i, i.e. 

 
� �kTQzK Kv �� exp� ,    (10) 

 
with QK=Eo+zlV+m/2. In fact K is proportional 
to the jump frequency from the A-rich phase to the 
B-rich one. This is different from the jump 
frequency in the B-rich phase (where the jump 
frequencies are larger at the same temperature) 
just because these frequencies depend on the 
composition.  

If there is an abrupt interface present at the 
very beginning of the intermixing, then the 
interface transfer controls the flux only until the 
gradients will be large enough to establish the 
diffusion flux J� larger than JI. In fact the 
magnitude of the finite value of JI�K gives the 
permeability of the interface and it is determined 
by the m and V/kT parameters. It is important to 
emphasize that this interpretation is forced by the 
demand that one would like to express the fluxes 
by the classical J~ -grad� form. In fact the validity 
of Fick�s I equation gradually brakes down with 
decreasing diffusion distances and in , as we have 
seen above, the �improved� forms of the 
continuum expressions of the atomic fluxes higher 
order derivatives of the composition should 
appear. These should lead to a �slowing down� of 
the flux and this can be taken into account by such 

the treatment presented in [15]. Thus the t/1  
dependence of the rate of the shift will be violated 
on the nanoscale just because the classical 
continuum description fails and for strongly 
composition dependent jump frequencies (for 
large �m� values) even a linear shift can be 
experimentally observed. Our results, illustrate 
that the shift of the interface can be different from 
the parabolic behaviour just because the 
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permeability of the interface is finite, and this can 
already lead to measurable effects in the interface 
kinetics on the nanoscale. Thus effects of other 
factors (like problems with sluggish structural 
rearrangements in non-coherent interfaces, slow 
reaction) in making the atomic transfer more 
restraint should be additionally considered, but 
then an extra activation barrier should be included 
into the atomistic model description, which was 
not the case in [15]. 
 
5  Conclusions 
 
It can be concluded that the Fick I law is less and 
less valid on the nanoscale (as the diffusion 
distance becomes more and more comparable with 
the atomic spacing). This can lead surprising, 
measurable effects (interface sharpening, non 
parabolic shift of interfaces) if the composition 
dependence of the diffusion coefficient if strong. 
The analysis of these effects leads to an atomic 
interpretation of the interface transfer coefficient 
K. K measures the interface permeability which is 
always finite and this offers a plausible resolution 
of the well known diffusion paradox predicting 

a t/1  dependence of the rate of the interface 
shift. Although it is almost exclusively accepted in 
the literature that linear growth kinetics are the 
result of interface reaction control, our results 
suggest that the linear or non-parabolic growth of 
a reaction layer on the nanoscale, cannot be 
automatically interpreted by an interface reaction. 
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