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Abstract

Schmitz et al. [Acta Materialia 57, 2673 (2009)] showed experimentally that stress effects significantly influence the intermixing
rate but surprisingly the parabolic growth rate is preserved. The rate-influence was interpreted by switching between Darken and
Nernst-Planck regimes caused by the diffusion induced stress. We analyse theoretically how the stress field shifts the system
from Darken to Nernst-Planck regime, why stress relaxationis not observed—although would be expected—and why the diffusion
kinetics is not influenced by the developing stress field.
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During intermixing stress free strain develops due to the net
volume transport caused either by the difference in the intrinsic
diffusion coefficients and/or atomic volumes or by the abrupt
change of the specific volumes if a new phase grows. As a con-
sequence stress develops within a certain characteristic time,
leading to a steady state. The stress field may relax also within a
characteristic time. [1, 2] Due to terms proportional to thestress
gradient in the atomic fluxes [see also later eq. (5)], the kinet-
ics is obviously expected to differ from the “pure diffusional”
(Fickian or parabolic) one in the transient stages. In steady
state—when the stress field approximately does not change—,
if it can be developed, the kinetics can remain Fickian, but the
intermixing rates still can differ considerably from the stress
free case.

It was shown recently [3] that stress effects may have a well
measurable influence on the intermixing rate in nanostructures
of spherical symmetry but surprisingly the diffusion kinetics re-
mains parabolic in time. The rate-influence was interpretedby
switching between Darken and Nernst-Planck regimes caused
by the diffusion induced stress.

Due to the complexity of the problem, however, until now
there have not been systematic investigations about the effect
of stresses on the kinetics.

In this communication we analyse theoretically—for the sake
of simplicity for a planar model geometry–how the stress field
shifts the system from Darken to Nernst-Planck regime. We
show that the development of the Nernst-Planck regime is very
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fast, finished before any detectable shift of the interface,and
that stress relaxation is not observed although would be ex-
pected since the time interval investigated was much longer
than the stress relaxation time. We explain why the diffusion
kinetics is not influenced by the developing stress field although
it would be expected.

Stephenson—in one-dimensional, isotropicn component
system—derived a set of coupled differential equations for the
description of the resultant stress development and stressre-
laxation by viscous flow, convective transport and composition
evaluation: [4, 2]
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whereD/Dt denotes the substantial derivative,v is the veloc-
ity field required to determine the spatial evolution of the sys-
tem (Kirkendall velocity),P is the pressure,t is the time,E
is Young’s modulus andη is the shear viscosity. Furthermore
Ωi, ρi and ji are the molar volume, the material density and the
atomic flux of componenti, respectively. The atomic fraction
ci instead ofρi is, however, more convenient for describing the
evolution of the system. Using thatci = ρi/ρ, whereρ =

∑n
i=1 ρi

is the total material density, eq. (3) becomes
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The atomic flux is given by

ji = −ρ
[

ΘiD
∗
i∇ci + D∗i

ciΩi

RT
∇P

]

, i = 1, ..., n (5)

hereD∗i is the tracer diffusion coefficient,R the molar gas con-
stant,T the absolute temperature andΘi the thermodynamic
factor. Note that in this paper we restrict ourself to an ideal
binary system, i.e.Θi = 1.

Ignoring the stress effects, Stephenson’s model is equivalent
to Fick’s model: ignoring the second term in eq. (5), eq. (3) is
just Fick’s second law. It is well known—according to Boltz-
mann’s transformation [5, 6]—that the solution of Fick’s sec-
ond equation results in parabolic shift of planes with constant
ci: x2

p ∝ t or xp ∝
√

t. Thus Stephenson’s model is suitable
to investigate how the stress effects influence the diffusion ki-
netics; whether anomalous diffusion kinetics can be observed
thanks to developing-relaxing stress fields.

Theoretically the time evolution of the effect of diffusional
stresses can be classified into four different stages:[1, 2, 4] i)
t < tQss, ii) tQss < t < tr, iii) t ≈ tr and iv) t ≫ tr. HeretQss is
the time necessary to develop a steady state stress distribution
and tr is the stress relaxation time of ‘pure’ Newtonian flow
determined by the second term in eq. (1). Supposing that in a
stressed sample the sum of the divergences of the atomic fluxes
are negligible, eq. (1) becomes

DP
Dt
= − E

6(1− ν)η
P, (6)

and its solution isP = P0 exp
[

− E
6(1−ν)η t

]

, whereP0 is the value
of the pressure at the beginning of the observation of the relax-
ation. The relaxation time is the time necessary for the pres-
sure (stress) to decreases to thee-th part of its initial value:
tr = 6(1− ν)η/E.

We solved the above system of equations (1, 2, 4 and 5)
numerically with input parameters corresponding to Si/Ge bi-
nary system [i = A, B in eqs. (1)–(5)]. However, not to be
restricted to one specific case, we varied the parameters in a
wide range (the bold ones correspond to the Si/Ge[7, 4, 8, 9]):
Young’s modulus was supposed to be composition dependent
E = cAEA + cBEB, whereEA = 18.5, 185 and 1850 GPa,
EB = 10.3, 103, 1030, 16.3, 163and 1630 GPa; Poisson’s ra-
tio: νA = νB = 0.27; viscosity:ηA = ηB = 2 × 1012, 2× 1014

and 2× 1016 Pas; molar volumes:ΩA = 1.20× 10−5 m3/mol,
ΩB = 1.36× 10−5 m3/mol; T = 700 K. We supposed expo-
nentially composition dependent diffusion coefficients: D∗i =
D0

i exp(−mcA) and thatD0
A/D

0
B = 1, 2.4 and 10, moreover

m′ = m log10 e = 0, 4, and 7 (wheree is the base of natural
logarithm, andm′ gives in orders of magnitude the ratios of the
diffusion coefficients in the pureA andB matrixes: for instance,
m′ = 4 means that theA atoms jumps 10, 000 times faster in the
A matrix than in theB). [10]

Note that using these parameter valuestr falls in the range of
(5− 9)× 106 s.

For the numerical work all equations were transformed into
the form containing only dimensionless variables and parame-
ters: x′ = x/l; t = tD/l2; P′ = P/E; D′i = Di/D; η′ = ηD/El2;
Ω′i = Ω; ρ′i = ρiΩ. Herel is an arbitrary length comparable to
the length-scale of the investigated problem,E is the average
Young modulus,Ω is the average atomic volume andD was
chosen to be equal toD0

A.
Figs. 1a and 1b illustrate two typical, markedly different

composition and pressure profiles calculated for stress-free ini-
tial conditions, i.e. only stresses of diffusion origin were taken
into account. The results in Fig. 1a were obtained by supposing
composition independent diffusion coefficient and accordingly
the profiles evolve symmetrically, whereas in Fig. 1b they are
asymmetrical as a result of the strongly composition dependent
diffusion coefficient. If for example the diffusion is orders of
magnitude faster in theB matrix than inA, practically onlyA
atoms can dissolve into theB matrix andB atoms can hardly
penetrate into theA matrix. Consequently, a stress peak devel-
ops in theA side close to the interface and on theB side an
almost homogeneous stress field (with opposite sign) appears.
This sharp stress peak shifts with the moving interface.

In order to investigate the diffusion kinetics, the logarithm of
the position of planes with constant composition (cA = 0.1, 0.2
..., 0.9)—Kirkendall planes—was plotted as a function of the
logarithm of time:xp ∝ tkc , i.e. log10 xp ∝ kc log10 t, wherekc

is calledkinetic exponent. If the kinetics is parabolic, the data
points fit a straight line with a slope of 0.5. If, however, the
kinetics is anomalous, either the slope differs form 0.5 or the
data points do not fit a straight line.

As an illustration Fig. 2 shows two examples, obtained by
taking into account and neglecting stress. It can be seen that the
data points fit very well a straight line with a slope of≈ 0.5. Not
only in these cases but in all others,kc was never smaller than
0.5 or larger than 0.55. Although the stress did not influence
significantly the value ofkc, it slowed down the intermixing
process (the intercept is lower).

As was mentioned in the introduction, the time evolution of
the effect of diffusional stresses can be classified into four dif-
ferent stages in symmetric systems (withm′ = 0): i) t < tQss, ii)
tQss < t < tr, iii) t ≈ tr and iv)t ≫ tr.

We observed that stage i) is extremely short. Intermixing on
the scale of a few tenths of nanometer is enough to reach it. It is
in agreement with the experimental observation of Schmitz et al.
[3]. This means that a stress gradient in the central zone, where
the composition falls, becomes quasi-stationary extremely fast
for composition independent diffusivities (m′ = 0, symmetric
diffusion) as can be seen in Fig. 1a. In case of composition de-
pendent diffusivities (m′ , 0, asymmetric diffusion) the stress
profile becomes also quasi-stationary, in this case, however, two
significant stress gradients develop at the one of the borders of
the diffusion zone (left boundary in Fig. 1b). Thus markedly
different influence of the stress profiles on the atomic fluxes
would be expected in stage ii).

In stage ii), in symmetric diffusion case, slowing down of the
intermixing is expected because the stationary stress gradient
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Figure 1: Illustration of the time evolution of the composition (atomic fraction of componentA) and pressure (P) profiles for (a)composition independent (m′ = 0)
and (b)strongly composition dependent (m′ = 7) diffusion coefficients. Input parameters:m′ = 0, D0

A/D
0
B = 2.4, EA = 185 GPa,EB = 103 GPa,η = 2× 1014. The

initial composition profile was rectangular, the sample wasstress free and the interface was at 0 nm in both cases. Only the interface region is plotted.
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Figure 2: Position of a plane with constant composition (cA = 0.6) as a function
of time (xp ∝ tkc , i.e. log10 xp ∝ kc log10 t). D0

A/D
0
B = 10, other input param-

eters are the same as in Fig. 1a. As can be seen, the plane shiftis in the range
of 0.1 nm butkc is already close to 0.5. Moreover the intercept is lower for the
case when stress is considered, therefore the intermixing rate is slower.

tends to diminish the volume flow itself. The larger the differ-
ence in the resultant volume flow–measured byΩADA−ΩBDB–
the more pronounced is the effect. Note that stress gradients
also develop outside of the diffusion zone (see Fig. 1a) but here
their influences on the intermixing process are negligible.

For asymmetric diffusion, however, the conclusion is not so
obvious, since there are two stress gradients with oppositesigns
at one of the borders of the diffusion zone as can be seen in
Fig. 1b. Thus one of them decreases whereas the other increases
the resultant volume flow. The computer simulations show that
even in this case the stress effects slow down the intermixing
process, i.e. the slowing down effect plays the dominant role.

As was shown above, the stress effects have practically not
influence on the value of the kinetic exponentkc. To understand
it, we have to analyze the expression for the atomic currents. It
is obvious that the diffusion kinetics may differ from the clas-
sical Fickian one only if the second term in eq. (5) becomes
dominant or at least comparable to the first one. For further
analysis, we reformulate eq. (5)

ji = −ρΘiD
∗
i∇ci

[

1+
ciΩi

RTΘi

dP
dci

]

, (7)

where dP/dci = ∇P/∇ci. Thus ciΩi
RTΘi

dP
dci

has to be compared
to unity to estimate the weight of the influence of the pressure
gradient on the atomic flux.

Since the composition and the pressure falls in very similar
length scale in the diffusion zone, dP/dci is practically constant.
Its value can be estimated, asci changes between 0 and 1 in the
diffusion zone as well as the change in the pressure can be de-
termined from the simulations. Therefore dci ≈ ±1. Moreover,
for instance, dP ≈ 0.3 GPa in Fig. 1. Thus dP/dci ≈ ±0.3 GPa.
Note that depending on the input parameters, the absolute value
of dP/dci falls in the rage of 0.2− 1 GPa.

Substitutingci = 0.5 (as an average value in the diffusion
zone),Ωi = 10−5 m3/mol, T = 700 K andΘi = 1, the ab-
solute value of ciΩi

RTΘi

dP
dci

is equal to approximately 0.17− 0.86,
thus has important influence on the atomic flux. That is why it
slows down the intermixing. However, as the composition and
the pressure fall in very similar length scale and their maxima
hardly change the dP/dci ratio is practically constant for very
long time, even fort > tr. A multiplying constant in the flux,
however, obviously does not change the kinetic exponent, but
may result only in the slowing down of the process.

DefiningΘiD∗i
[

1+ ciΩi
RTΘi

dP
dci

]

as aneffective diffusion coeffi-

cientDe f f
i , the expression (7) for the flux can be written in the

form of ji = −ρDe f f
i ∇ci. This means that in our simulations

one of the two atomic fluxes—belonging to the slower diffusing
(B) atoms—is enhanced by a factor of 1.17− 1.86, whereas the
other—belonging to the faster diffusing (A) atoms—is dimin-
ished by a factor of 0.83−0.14. The enhancement and diminish-
ing of the atomic fluxes practically equilibrate their initial dif-
ference. This means that the system is in Nernst-Planck regime.
This can be seen at the beginning of the curve in Fig. 3a, where
the ratio of the atomic fluxes is plotted as a function of time.
The fluxes depend of course on the position (see Fig. 3b), how-
ever their ratio is practically constant in the diffusion zone. In
Fig. 3a, the ratio is calculated from the maximal absolute value
of the fluxes, i.e. max| jA |/max| jB|. As can be seen the ratio
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Figure 3: (a) Ratio of the atomic fluxes of theA andB atoms versus the loga-
rithm of time. The left inset shows the same curve but the timescale is linear,
whereas the right inset shows the curve around its minimum. (b) Atomic fluxes
(their dimensionless form:j′i = jiΩl/D) and their ratio in the diffusion zone
at t/tr ≈ 1/5. (see also the text) Input parameters:m′ = 0, D0

A/D
0
B = 10,

EA = 1850 GPa,EB = 1630 GPa,η = 2× 1012.

decreases from 10 to approximately 1 extremely fast.
Since in the Nernst-Planck limitDe f f

A ≈ De f f
B = D̃NP, where

D̃NP is the interdiffusion coefficient in this limit, whereas in the
Darken limit (no stress)DA ≈ D̃D: D̃D/D̃NP ≈ 1.2− 7.1 in our
calculations.Note that this diminution is in the same order of
magnitude, which has been observed in Ref. [3]. It was obtained
there thatD̃D/D̃NP ≈ 2.6, whereD̃D andD̃NP were calculated
from the growth rate ofΘ′ phase in the Cu/Al /Cu as well as
Al /Cu/Al triple layers.

In stage iii) and iv), significant stress relaxation is expected.
However surprisingly, we hardly observe any decrease in the
stress levels although the investigated time interval was much
longer than the stress relaxation timetr. This is so because in
our case

∑

i Ωi∇ ji is not negligible as compared to34ηP in eq. (1)
even in the steady state regime as can be seen for example in
Fig. 4. Consequently the stress is not only relaxing but also
always re-developing, and the estimation oftr form eq. (6) leads
to unrealistic value.

We obtained that i) stress effects do not have measurable
effects on the kinetic coefficient of the interface shift, i.e. the
parabolic growth rate is preserved independently of the devel-
oping stress field. However, the intermixing rate decreases. ii)
The stress filed enhances the atomic flux of the slower compo-
nent whereas diminishes the other. As a consequence their ini-
tial difference is equilibrated, leading to the establishment of the
Nernst-Planck regime. The development of the Nernst-Planck
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Figure 4: Composition profile as well as the dimensionless form of
∑

i Ωi∇ ji
and 3

4ηP form eq. (1) att/tr ≈ 2. This figure looks similar at anyt/tr in the
steady state regime. For the input parameters see Fig. 3

regime is very fast, finishes before any detectable shift of the
interface. These are in agreement with the results in Ref. [3].
iii) This steady state stage was long enough not to reach its re-
laxation in the limits of the time interval investigated, although
it was much longer than the stress relaxation time. This is so
because the composition profile is not static but changes fast in
the timescale of the stress relaxation belonging to a pure New-
tonian flow and thus the stress re-develops continuously.
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