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Nonparabolic nanoscale shift of phase boundaries in binary systems with restricted solubility
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Computer simulations were used to study the interplay of the diffusion asymfuemposition dependence
of diffusion coefficient and the phase-separation tendeficlyemical effectin the kinetics of the interface
shift during dissolution in a binary system with restricted solubility. We have found that—on nanoscale, taking
into account only the diffusion asymmetry—the shift of the chemically sharp interface is not proportional to
the square root of the time as would be expected from Fick’s laws btlft,tevhere 0.25 k<1 (deviations
from the parabolic lay In ideal systems 05k.<1, but with increasing mixing energy/{ the interface shift
returns to the parabolic lank{=0.5), and at very larg¥ valuesk. can be even less than 0.5. This effect is
a real “nanoeffect,” because after dissolving a certain number of layeng time or macroscopic limif the
interface shift returns to the parabolic behavior. It is also illustrated that these phenomena can be observed
experimentally as well.
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In the past years, several papers were published about the this exchange moddl; ;. ; is the probability per unit time
interface motion during thin-film dissolution into a semi- (jump frequency that anA atom in layeri exchanges its
infinite substraté=* In Refs. 1-3 the atoms of the deposit position with aB atom in the layei +1 andz, is the vertical
(thin film) and those of the substrate had limited mutual solu-coordination numberC; denotes the atomic fraction @&
bility and the interface was sharp on nanoscale due to chem@toms on plana. It is plausible to assume that the jump
cal reasongphase separationin Ref. 4 the solubility was frequencies have an Arrhenius-type temperature dependence
not limited at all (ideal system but, surprisingly at first
glance, the interface remained sharp provided that the diffu- . Eii+1
sion asymmetry was largghe diffusion was faster by sev- Lijri=vexp - kT /'
eral orders of magnitude in the substrate than in the dgposit

In phase separating systems it was obtained from comwherev denotes the attempt frequenéydenotes the Boltz-
puter simulations that the interface displacement was propommann constant] is the absolute temperature, aBg; ,, is
tional to the square root of the time, whereas in ideal systeme activation barrier, which must be chosen to fulfil the con-
a violation of the parabolic law was observ@ebm atomistic  dition of detailed balance under steady stat€(/dt=0),
simulations on a discrete lattice and also from experiments in
Ni-Cu system. In both cases only extremities were investi- Ci(1-Ci11) Ty
gated, since in phase-separating systems the authors ne- Ci+1(1-C)) :Fi i1 ©)
glected the composition dependence of the diffusidijfu- '
sion asymmetryand in the second case only ideal systemThere are many choices & .., which fulfil Eq. (3).° For
was studied. instance, the following choice:

It is important to note that while the square-root kinetics
is obvious from the traditional Fick’s equations, the linear Eii+1=E°—[2,(Ci+Cis2)+2Ci 1](Vag— Vis)
behavior cannot be explained by them, i.e., it is a good ex-
ample for the deviation from the classical laws on nanoscale +[2,(Ci-1+Ci41) +ZCi](Vag—Van)

(see also Ref. ¢ —Z(VantV 4
In this paper, we investigate the influence of the interplay (Vag* Ves) @

of the diffusion asymmetry and chemical effeqthase-  satisfies it(for E;,,; a similar expression can be written
separation tendengyn the kinetics of the interface shift. We \yherev;; are the nearest-neighbor pair interaction energies
demonstrate by computer simulations how these parametegs ij atomic pairsz is the lateral coordination number, and

could influence the kinetics of the interface motion. Z=2z+2z,. E°, the saddle point energy, is independent of
The model used in our calculations is based on Mar“”’scompositivon. It is easy to show th& .., andE;,; ener-

deterministig kinetic equatiqﬁ‘sr’, where timg derivatives of gies can also be expressed in the following fdrm:
atomic fractions ofA atoms in theith atomic layer perpen-
dicular to thex axis can be given by

@

Eiiv1=E—ai+e;, 5

dc Eiv1i=E%—a;—¢, (6)
Tt = " %lCA-Ci)T o= (1-C)CiaTiyy i
whereE? containse® and all the concentration independent

+Ci(1-Ci; )l i1~ (1=-C)Ciiqlisqi]l. (D additional terms. Furthermore; ande; are proportional to
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Vaa—Vgg and to the solid solution parameteV,=V,g
—(Vaat+ Vgg)/2, respectively,

L 2
e._
@i =[2,(Ci_1+Ci 1+ Ci+Ciy) il
Vaa—Ves Trem T -
+7(Ci+Cjy 1)]—2 (7) £ 0. e N . -

and

£i=[2,(Ci_1+Ci 11— Ci—Ci12)+7(Ci—Cj ) ]V.
)

SinceE? is constant for a given system, angas well ase;
depend only otV and on ¥/ sa— Vigg), respectively, the only

term which dgscribes the phase-separation tenden@y.is FIG. 1. Kinetic exponent v¥/kT for differentm’ values. For
Furthermore, in homogeneous syster@s<{ C=cons¥i) &;  gmallm’ values there is a small maximum on the curves. Increasing

is obviously equal to zero, ang depends on the value & ny at a fixedV/kT, k. always increases, leading to a deviation from
Consequentlyg; is responsible for the composition depen- the parabolic law.

dence of the jump frequency or the diffusion coefficiésge
also Refs. 7 and)8n a homogeneous alloy. For the sake of
simplicity, in what followsZ(Vaa— Vgg)/KT will be denoted

04
0 01 02 03 04 05 08
V/kT

phase-separation tendency on the kinetics of the interface

by m, which gives the “strength” of the composition depen- Shift, the parametens” andV (or V/kT) were changed dur-
dence of the diffusion coefficierfor m’=mlogoe is the ing the calculations(ln one case—in order to show the in-

difference in orders of magnitude between the diffusion cofluénce of the orientation—we also changed the valueg of
efficients in pureA and B materials(Refs. 8]. It is worth ~ andz,).
mentioning that in the frame of the model used in simula- I the first case the direction of diffusion wakll), i.e.,
tions of Refs. 1-3 for phase-separating systéifis a; was 2 =6 andz,=3. The parametes’ andV/kT were varied
always composition independent, i.i=0 was assumed.  fom 1 to 7 and from 0 to 0.4or V from 0 to 0.05 eV at
To investigate the interface shift, we have solved @g. T=1250 K), respectively. Figure 1 shows the initial values
numerically for an fcc structure. The input parameters weréf the kinetic exponenk, (obtained by fitting to the interval
z,,z,,V,m’, T, and the initial composition distribution. For corresponding to dissolution of the first five plapesersus
the description of the interface shift, we started from theV/KT for differentm’ values. It can be seen thigtis almost
following initial condition: on the left- and right-hand sides constant and, as is expected, is very close to 0.5 for small
of the interface all the atomic planes were occupied only by(the discussion of the small deviations form the “pure” para-
A atoms C;=1 for all i to left) as well as byB atoms C; bolic growth will be given below At the same time, the
=0 for all i to right), respectively. deviation from the square-root kinetics increases with in-
In order to avoid “finite effects,” a continuous boundary creasingm’ for a fixed value ofV/kT.
condition was applied, i.e., when the composition of the For the illustration of the interface shift Fig. 2 shows the
atomic planes at the either ends of the sample were changgsition(and the shapeof the interface at different times for
by AC=0.1Cs, (Cso is the solubility limip, ten pureAor  m’=1\V/kT=0.28 andn’ =7 V/kT=0, respectively. It can
B atomic planes were added to the sample. Therefore, if, e.gbe seen that in the first case the profiles are situated equidis-
there were 30A and 30B atomic planes initially C;=---  tantly with a square-root time scale, whereas in the second
=Cz0=1, C3;=---=Cq=0) and, e.g., the composition of case—using the same time scale—the distances between the
the 60th plane changed from O to @J,, ten pureB atomic  curves increase with time, indicating the deviation from the
planes were added to the end of samp;=0.1C,,), parabolic law(in this case the value &, was 0.88.
Cg1=:--=C=0). Note that if the above condition was  The deviation from the parabolic law is a real “nanoef-
changed by decreasingC the solution of Eq(1) practically ~ fect,” because after dissolving a certain number of layers
was not influenced but, due to the rapid “growth” of the (long time or macroscopic limit the interface shift returns to
sample, the calculations were significantly slowed down. the parabolic behavior independently of the input parameters
The position of the interface was determined by the plandgsee Fig. 3.
with the composition 0.5it can obviously lie between two For the investigation of the influence of orientation we
atomic planes After determining this positiong), its loga-  also carried out calculations fag=4 andz,=4. Since the
rithm versus the logarithm of the time (Ipg-logt) was plot-  main tendencies were the same as those obtained for the
ted. Fitting a straight line to the data, its slope gave theprevious orientation(only the value ofk. was changed
power of the function describing the shift of the interfdite  slightly), these results will not be shown in the discussions.
will be called kinetic exponenand will be denoted bk.). In order to understand the character of the curves in Fig.
Obviously for parabolic interface shik,=0.5. 1, first one should consider the well-known Cahn-Hilliard
Since we wanted to demonstrate the effects of the comform of the Fick's second equatibh (for composition de-
position dependence of diffusion coefficients as well as thgpendentD)
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FIG. 3. Change ofk; during dissolution fn'=7, V/KT
1 ¢ [au] () =0.09). The more the number of layers dissolved, the closer the
] 3341 —— value ofk is to 0.5.
0.8 13669 —x—
] 30405 —*— N o
i 53361 —&— the boundary conditions allow the application of the Boltz-
0.6 7 mann transformatiore.qg., if the “finite effects” are negli-
0 1 gible) with A=x/t?>— it is clear that the shift of a plane
0.4 with constant concentration should be proportional to the
] square root of the timek(=0.5) even for composition de-
0.2 7 pendentD.
] On the other hand, if the first term is negligible in E),
09 _ ———— the transformation can be done with=x/t¥*. Therefore, in

this casek. should be equal to 1/4. This can be less then
1/2 for highVV/KT as can be seen in Fig. 1.

As was already mentioned above, the curves in Fig. 1 are
not monotonic(especially for smalm’), they have a maxi-
mum. The reason of this character is thdf; changes its
sign at a certain value af/kT. In our case this change takes
Rlace atV/kT=0.16 and the maximum of the curve for
=1 is just here. Note that for higher’ the maximum is less
pronounced and shifted to the lower values\M#kT. This
behavior cannot be explained by considerations based on the
continuum equations alone, but can be obtained from an ato-
mistic approachvalid on nanoscale as welbnly. Indeed—
according to Eq(9) and Eq.(10)—the maximum should be
where() is the atomic volumeD is the diffusion coefficient  sjtuated at the same/kT value for strongly concentration
related to the jump frequency by the relatiBr=2,d°T'i®  dependent input parameters astwr=0, i.e., the position of
(hered is the interplanar space in direction of diffusion and the maximum should be independentrof.
is the thermodynamic factpf « is the gradient energy As we have seen above, already the effect of kT
coefficient,fg is the second derivativéby composition of parameter on the maximum of the curves cannot be fully

the free energy. Furthermoe, accounted for from a continuum description. This is even
more valid for the general effect afi’ on the kinetic expo-
K z,d?V 2,d°V/KT nent. Indeed, as can be seen in Fig. 1 ¥9kT=0, the
fg B kT 1 ' kinetic exponent increases with increasimgy. This means
—2ZV+ ci-o 2ZVIKT+ Ci-0 that the continuum and discrete atomic equations do not give
the same results at the length/time sqaanoscalginvesti-
gated(see also Refs. 4 and.8
In Eqg. (9) the input parameters, in principle, can be concen- Since our equations are deterministic, they do not account
tration dependent. Note that E®) can be obtained from the for the possible fluctuationgstochastic behavipr which
discrete equations #;/kT<1, and if the diffusion length is could be especially important on nanoscale. On the basis of
longer than (10-10@) (see Refs. 7 and)8 our previous results on the linear shift of sharp interface in
If the second term in Eq9) is negligible, this expression ideal binary systent8&—where these effects have also been
is just the traditional Fick’s second equation, from which—if investigated by Monte Carlo simulations and it has been

-10 -8 -6 -4 -2 0 2 4
label of the lattice plane

FIG. 2. Position of the interface at different times f@ m’
=1, V/kT=0.28 and(b) m'=7V/kT=0. It can be seen that, us-
ing a square-root time scale, (a) the profiles are situated equidis-
tantly, whereas ir(b) there is a deviation from the parabolic law.
(Note that only some atomic layers around the interface are show
in the figure)
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According to the discussions above, Fig. 1 and Fig. 2
reflect an interplay of two effectst) the change ok, due to
the gradient energy effects scaledWWyand included, e.g., in
the continuum equatio®) as well and(ii) the change ok,
due to the diffusion asymmetry measured iy [and can
only be obtained from the discrete atomic equatidbg.
This latter nanoeffect—as was shown in Ref. 4 and can be
seen from Fig. 3—should diminish for long diffusion
distances/times.

For the illustration of the importance of the above state-
ments, it is worth considering typical values fédrandm’.
For example, at those temperatures, where the diffusion co-
efficient is large enough to produce nanoscale diffusion al-
ready after several hours)’ can be between dn Cu-Ni or

FIG. 4. Sharpness of the interface for two different cases. Theg"Ge systemsloat about 700 End 7.3(for Mo-V system -at
dashed line shows the initial position of the interface. about 1050 K. On the other hand, the value dfcan lie

typically between 0 and 0.05 eV. For example, at 750 K: for

shown that they do not influence the kinetics of theCU-AQ systemm’=15, V/kT=0.49" for Cu-Fe system
shift—we expect that these conclusions apply for this case a8’ =6V/kT=0.557 for Ni-Ag systemm’=5/kT=0.82
well. (Ref. 3, and for Ni-Au systenm’=6, V/kT=0.36. Thus

For the further analysis of the character of the curves, it i®ne can conclude that there exist binary systems in which the
worth studying the influence ofi’ andV/kT as well on the deviation from the parabolic law can be observed experimen-
abruptness of the interface. It is known from previoustally as well on nanoscale.
works*'%that in completely miscible system¥{kT=0) the We have shown from computer simulations that the shift
originally sharp interface can remain shagp the originally  of a chemically sharp interfagén a phase-separation binary
wide interface can become sharfféttif the parametem’ is  AB system can deviate from the parabolic law on nanoscale.
large enough. A similar statement is valid for the parametehe deviation depends on the strength of the composition
V/KT for m’=0: larger V/KT results in sharper interface. dependence of the diffusion coefficiefarametem’) and
Regarding the combined effect WfkT andm’, we find that  the phase-separation tender(paramete//kT). For small

if m’ is large enough the interface could be even sharpejayes ofv/kT with increasingm’ the kinetic exponenk,
than for a relatively strong phase-separation tendeseg .o, even approach 1. On the other hand, increavitigh

Fig. .4)' : .decreases this deviation and, e.g., for snmall valuesk,
Since for sharper interface the curvature of the COMPOSi—_ £ an also be obtained faf/kT>0.4. It is illustrated

tion proflle(propo_rtlonal to the third (_jerlvatn)es higher, the that the above deviations can be experimentally observed in
effect of the gradient energy correctidisee, e.g., the second L
certain binary systems at nanoscale.

term in Eq.(9)] is also more important. This is why for larger

m’ the “compensation role” of this term is stronger as well.  Thjs work was supported by the OTKA Board of Hungary

This means, e.g., fan’ =3 the kinetic exponent change_s by (Grant Nos. F043372 and T03812and DAAD/Hungarian
0.22 in the range 0-0.46 &f/kT; whereas fom’ =7 this Fellowship Committee Grant No. 50/2001.

change is equal to 0.41.
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