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Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale
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In our paper, we offer a natural resolution for a long-standing paradox in diffusion. We show that the growth
rate of the diffusion zone (reaction layer) should not go to infinity with decreasing time (as 1/ V1), just because
the diffusion permeability of the interface is finite. Expression for the changeover thickness X" between the
linear and parabolic regimes of the interface shift in phase separating binary A(B) systems is derived in the
framework of a deterministic atomistic model for diffusion. X* lies typically between 0.01 and 300 nm,
depending on the composition dependence of the diffusion coefficient and the phase separation tendency of the
alloy. While in ideal binary alloys with composition independent diffusivity, the deviation from the parabolic
law practically cannot be observed, in real systems (where the diffusion coefficient can change several orders
of magnitude with the composition), measurable deviations are expected as it was experimentally observed
very recently in the Ni/Cu and Au/Ni systems. We also offer an atomistic explanation for the phenomeno-
logical interface transfer coefficient K. It measures the finite interface permeability (proportional to the jump
frequency across the interface) and thus it controls the shift of the interface at short times (diffusion distances).
Although it is almost exclusively accepted in the literature that linear growth kinetics are the result of interface
reaction control, our results suggest that the linear or nonparabolic growth of a reaction layer on the nanoscale

cannot be automatically interpreted by an interface reaction.
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I. INTRODUCTION

It is usually supposed that the kinetics of the formation of
a diffusion zone is determined by the diffusion coefficients.
For example, in the simple classical Darken limit, the growth
of the diffusion zone in a binary A(B) system is determined
by the interdiffusion coefficient D=cgD,+c,Dp, wWhere D;
and ¢; denote the intrinsic diffusion coefficients and the
atomic fractions, respectively. However, this approach must
fail at short times because according to Fick’s f;lrst law the
growth rate of the zone is proportional to 1/t (see, e.g.,
Refs. 1-4) which means that the zone grows at an infinitively
fast rate when the time ¢ goes to 0. In other words, in the
expression of the atomic flux, J=—D grad p (p is the den-
sity), the gradient is infinite if there is a discontinuity in the
density at the beginning (which is the case in typical inter-
diffusion measurements), and other phenomena must become
rate limiting for short distances (times). The same conclusion
can be drawn for the growth of a reaction layer during
interdiffusion.”

Until now, only two rate limiting effects were extensively
treated in the literature: the nucleation rate>® and the inter-
face reaction rate control.'® These plausibly led to deviations
from the parabolic growth: for example, in the case of inter-
face reaction control, the growth of the reaction layer, and
thus the shift of the interface(s), was linear with time. It is
important to note that the atomistic explanation for the inter-
face reaction control is still missing.”® Since for the under-
standing of the growth law of a phase, the first step is the
proper description of the motion of individual phase bound-
aries, we will concentrate on this question, into which nucle-
ation problems do not enter.

Computer simulations have shown”™'~ recently that a thin
Ni film dissolved into a Cu substrate practically layer-by-
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layer at short times. Due to the strong composition depen-
dence of the diffusivity, the atomic flux in Ni was practically
zero, only the Ni atoms dissolved into the Cu matrix and
these atoms diffused away very fast in the Cu matrix. Each
Ni atomic plane dissolved subsequently—the dissolution of
the next plane began only after the complete dissolution of
the previous one—reproducing the same process. The current
atomic fraction of Ni atoms in the interface plane i was ap-
proximately a periodic function of time and thus the time
averaged values of ¢; and the rate of the interface shift v
(denoted by (c) and (v), respectively) were constant. Con-
stant (v) means a linear interface shift, which was also ex-
perimentally confirmed during nanoscale dissolution of Ni
into Cu single crystalline substrate.’

These results indicate that, in this case, the linear kinetics
is inherently related to the finite mass transfer across the
interface.

In this paper, it will be shown that the finite diffusion
permeability of the interface will be a rate limiting process
for short distances or times and a numerical estimation for
the changeover thickness between the linear and parabolic
regimes will also be given.

II. ESTIMATION OF THE CHANGEOVER THICKNESS
A. Basic Equations

In the framework of a discrete, deterministic kinetic
model,’ the net flux of A atoms from plane i to (i+1) is
given by

Jim =zlei(l =)y = (1 = )iy 11, (1)

where c; is the atomic fraction of A atoms in plane i, I'; ;,; is
the frequency with which an A atom in plane i exchanges
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with a B atom in plane i+1, and z, is the vertical coordina-
tion number. It is usually assumed that the exchange frequen-
cies have an Arrhenius type temperature dependence

Fi,i+1=ri7i and Fi+1,i=ri/%

with

I';=Tyexpla/kT] and vy;=exp[-e/kT],

where Ty=v exp[—-E,y/kT], v denotes the attempt frequency,

EO is composition independent and contains the saddle point
energy, k is the Boltzmann constant, 7 is the absolute tem-
perature, and (see also Refs. 9, 10, and 14-16)

a;=[z,(ciny + Cyy + ¢+ Cpn) +z(ci+ cyy) IM
as well as
g;=[z,(cioy + cip1 = ¢ = Ciya) + 7lc; = ¢ ) IV

Here V is the regular solid solution parameter,' proportional
to the heat of mixing and z; is the lateral coordination num-
ber (Z=2z,+z;). For phase separating systems, V>0. The
parameter M=mkT/2Z determines the strength of the com-
position dependence of the transition rates.'”!® It can be
estimated, e.g., from the nearest neighbor pair interaction
energies of ij atomic pairs V;; as M=(V,4—Vpg)/2, or can be
deduced from the composition dependence of the diffusion
coefficients:!” D(c)=D(0)exp(mc). For example, m is about
10 and 16 in the Ni-Cu and Mo-V systems,
respectively,'"1>1% which means, e.g., that the diffusion is
about 4-5 orders of magnitude faster in the Cu matrix than in
the Ni.

B. Form of the Interface Current

According to the results obtained for the dissolution of a
Ni thin film into a Cu substrate,’ the flux J ; across a coherent
interface at the very beginning of a dissolution process [i.e.,
taking c;_,=c;_1=1, ¢;4;=c;4»=0; see also Fig. 1(a)] is

J1=Jii01 = 2,00 111 = 2,000 141 -

In this expression at a bit longer times (and not just at the
beginning), we have to take into account that the composi-
tion of plane (i+1) is also different from O (see Fig. 1). Let
us denote this by cg(=c;,). Thus from Eq. (1),

Jr=z,I'1y(1 + @)Ac (2a)
with
=5M(1 —1/y), (2b)

Ac

where Ac=(c)-cg. In T; and vy, a=[z,+(z+z,)({c)
+cp)IM and &;=[z,+(z,—2,)Ac]V, respectively. Since in all
the cases investigated below the values of ¢ were always
between 0 and —0.25, ¢ has been neglected as compared to
1, which leads to an error of maximum 25% in the following
considerations.

In fact, in Eq. (2a), ¢4 changes slightly with time, which is
also related to the following simulation results:® after the
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FIG. 1. Calculated composition profiles at V/kT=0.09~=~0

(nearly ideal system) and m=-16.11 for two different running
times: (a) t=f; and (b) r=67¢,. It can be seen that, because of the
large diffusion asymmetry ( |m| is large), the upper part of interface
remains sharp and shifts. The composition at the kink of the profile
(denoted by ¢  in the text) slightly increases with time. The division
of the composition profile into three regions is illustrated in (a) and
the composition of the plane belonging to the “interface” is denoted
by ¢; in the text.

dissolution of a certain number of layers the transition from
linear to parabolic shift started. This also means that with
increasing time, J; decreases slightly.

According to Egs. (2a) and (2b), for a more refined treat-
ment, an estimation of both the (c) and cg values is neces-
sary. For example, it was obtained from numerical
estimations® for V=0 (ideal system) and m=-22.3 (at T
=1000 K and for z,=3, z;=6) that (¢)=0.78 and it was prac-
tically independent of the temperature in the range investi-
gated. Obviously it is generally expected that (c) depends on
V and m; for m<0 (the diffusion in the B-rich phase is
faster) and V=0, {c) lies between 0.5 and 1 (for larger nega-
tive m, (c) will be larger and closer to unity). Furthermore, as
will also be shown later, for large V values, cp can be taken
as the solubility limit, while for very small or negligible
values of V, cg should be estimated from simulations of the
composition profile (see Fig. 2).
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FIG. 2. Calculated composition profile at V/kT=0.36 (phase
separating system) and m=-16,11. Here ¢z and 1-cg denote the
miscibility gap and, similarly as in Fig. 1, the asymmetry of the
profile is visible as well.

C. Condition for the Changeover Thickness

On the basis of the above results, we can state the follow-
ing: for m<<0, at the beginning, when the composition
gradient is very large, the flux in the B-rich phase (3 phase)
is larger than across the interface (J;<<Jj). In this stage, J;
controls the dissolution process. During the process, Jg be-
comes smaller and smaller because the tail of the composi-
tion profile in the B phase grows more and more, resulting in
the decrease of the gradient of the composition. Although, as
was mentioned above, J; also decreases with increasing time
or number of layers dissolved, but J 8 decreases much faster.
As a result, in a certain moment, J 8 becomes smaller than the
J;, and from this point, J 8 is the rate limiting. Thus the tran-
sition time or thickness must be deduced from the condition

J'3=JI, (3)

which has to be fulfilled at the interface (see Fig. 3).

[

0

&

atomic fraction of A

distance

FIG. 3. Scheme of the composition profile and the atomic fluxes
in the linear (;, solid line) and parabolic (z,>1,, dashed line) ki-
netic regimes. In the linear regime Jz>J;, whereas in the parabolic
one Jz<<J;. The length of the arrows illustrates the intensity of the
fluxes. Note that for large |m|, J, is practically zero as indicated.
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Now we look for an appropriate form of the diffusion flux
J in the long time limit when the composition profiles, ex-
cept the very narrow interface area, should be flat enough
(see Figs. 1 and 2).

For the thickness of the diffusion zone, we can write
X=X +X+Xg=nj,a+na+nga, where n, and ng are the
numbers of atomic planes along which the composition falls
in the « and S phases on the left-hand and right-hand side of
the interface, respectively. The parameter a is the distance
between the neighboring atomic planes in the direction of
diffusion and the thickness of the interface is n;a. In cases of
large diffusion asymmetry (|m| is large), in the long time
limit, X=X can be a good approximation.

Now one can find an expression for Jz from the con-
tinuum form of jz=a€)™'J 4 [obtained from Egq. (1), see, e.g.,
Refs. 9 and 10]: jﬁ=—Q‘1Dﬁ gradg ¢, where () is the atomic
volume and Dp=z,a’T'y® exp (mcp). O is the thermody-
namic factor?® for which, in the following, ®=1 will be
taken, since its value is close to unity if V=0 or if V#0 but
co=1, cg<<1 (large positive values of V). Indeed, approxi-
mating the composition profile in the B phase by a linear
function (see also Figs. 1 and 2): gradg c=~cgz/ X,

Jg=z,al’gcgexp(megl2)/X g. (4)

Note that in the exponent, describing the composition depen-
dence of Dg, the composition was taken to be cg/2 since an
average value (over the X, distance) of Dg appears in
Eq. (4).

Thus from the Jz=J; condition [see Eq. (3)], we can de-
termine the thickness of the 8 phase where the transition of
the kinetics from the linear changes to the parabolic one, i.e.,
the changeover thickness (X EX;) is

X, mc —a;+¢g;|c
i < kS B '] 5
eXp{ 2 kT ]Ac‘ ®)

In Eq. (5), cg obviously means the composition in the 3
phase just at the interface, when the condition (5) fulfills.
Although Eq. (5) is obtained for an exchange mechanism, a
similar expression can be obtained for a vacancy mechanism
(see Appendix A): X;V= §1X; with &, having a value lying
between 1 and 10 in practically important cases. This means
that Eq. (5) gives a slight underestimation for X;.

Note that, according to the mass conservation, there
should exist a single relation between the shift of the inter-
face AX and Xg: AX =czX /2. However, since in the para-
bolic limit J;>J 8 for the characteristic length of the inter-
face shift, above which the parabolic limit is observed, one
can take AX=50cX /2.

We have tested Eq. (5) by comparing the calculated Xg
values to the results of our computer simulations and experi-
mental results.”!1-1821.22 We found good agreement (see also
Appendix B). For instance, if the diffusion coefficient is
composition independent (m=0), the X" changeover thick-
ness is about 0.2a, which coincides with simulations and
analytical estimation given in Refs. 21 and 18.

When D is composition dependent and the system is com-
pletely miscible (V=0, m # 0, like Ni/Cu), we obtained that
both the X" and AX, are several hundred atomic layers (about

035426-3



D. L. BEKE AND Z. ERDELYI

300 nm) in reasonable agreement with the results of Refs. 9
and 11. If the system is not completely miscible (V>0, m
#0), Eq. (5) gives also realistic results. For example, in the
Ni-Au system, X~ and AX, are about 19a and 6a, respec-
tively, and both computer simulations'! and experiments”
indicate similar values.

We have found that the stronger the composition depen-
dence of D (the larger the absolute value of m) at a fixed
value of V, not only the value of X"is larger but it has a more
definite increase with decreasing temperature as well.

III. ATOMISTIC MEANING OF K

In order to derive an accurate form of the “interface trans-
fer coefficient” K of positive sign (which would be necessary
to obtain a linear growth law), a more detailed analysis of the
steady state shape of the moving interface and the flux ex-
pression across such an interface would be necessary. Indeed,
the steady state shape of the moving interface is determined
not only by the value of V/kT. As was shown in Ref. 11 (see
Fig. 4 there), if |m| is large enough the interface could be
even sharper than for a relatively strong phase separation
tendency. This illustrates that the determination of K is a
delicate problem.

However, following the phenomenological definition of
K, J;=K(c,—c) (c and ¢, denote the current and the equilib-
rium composition at the interface, respectively), and compar-
ing this to Eq. (2a), we can see that (taking c¢,={(c) and c
=cp) K is just

K =2z,I1y/(1 + @) = vz, exp(— Qx/kT) (6)

with Qg=Eg+7,V+MZ=Ey+7,V+mkT/2.

In fact, the above approximation, together with the as-
sumption on the diffusion current J,=DAc/X Q) with Ac
=1 and ¢c,—c=1, was used in Ref. 1 to get an order of
magnitude estimate of X* from the J;=J,, condition as X"
=D/KQ. In this case, the composition dependence of the
jump frequencies was neglected (m=0), ie., D,=Dg
=z,va® exp(—Ey/kT)=D, exp(-Qp/kT) was assumed.

It can be seen from Eq. (2a) that K is proportional to the
jump frequency from the A-rich phase to the B-rich one. This
is different from the jump frequency in the B-rich phase
(where the jump frequencies are larger at the same tempera-
ture) just because these frequencies depend on the composi-
tion. If there is an abrupt interface present at the very begin-
ning of the intermixing, then the interface transfer controls
the flux only until the gradients will be large enough to es-
tablish the diffusion flux J larger than J;. In fact, the mag-
nitude of the finite value of J;=K gives the permeability of
the interface and it is determined by the m and V/kT param-
eters.

It is important to emphasize that this interpretation is
forced by the demand that one would like to express the
fluxes by the classical Jo—grad p form. In fact, the validity
of Fick’s I equation gradually breaks down with decreasing
diffusion distances, and in the “improved” forms of the con-
tinuum expressions of the atomic fluxes, higher order deriva-
tives of the composition should appear.!®!® These should
lead to a “slowing down” of the flux and this can be taken
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intoraccount by such a treatment presented above. Thus the
1/+t dependence of the rate of the shift will be violated on
the nanoscale just because the classical continuum descrip-
tion fails and for strongly composition dependent jump fre-
quencies (for large |m| values) even a linear shift can be
experimentally observed.

There are important differences between the approaches
used in Ref. 8 (which is, to our knowledge, the only work
trying to give an atomistic explanation of K) and presented
here. In our approach, the nanoscale effects and the effects of
the strong composition dependence of the diffusion coeffi-
cients (strong diffusion asymmetry) were specially ad-
dressed. We derived an expression for the interface transfer
coefficient of positive sign and show that this is proportional
to the atomic jump frequency across the interface. In fact, K
is the measure of the finite permeability of the interface and
thus it controls the growth rate of the diffusion zone at short
times. In Ref. 8, a negative K was derived from the introduc-
tion of a sharp Gibbsian interface instead of the real (wider)
one.

The above considerations were made for coherent inter-
faces. In most of the real cases, noncoherent interfaces are
present in the diffusion zone and then other factors (e.g.,
activity of vacancy sources and sinks in the interface?>2 in
case of vacancy mechanism of diffusion) can also play an
important role to make the transfer of atoms across the inter-
face sluggish enough®?% to control the process. These effects,
however, are rare or must be in the same order of magnitude
as the effects considered above, since on the micrometer
scale clear experimental evidence for deviations from the
parabolic behaviors is very rare.”> On the other hand, our
results illustrate that the shift of the interface can be different
from the parabolic behavior just because the permeability of
the interface is finite, and this can already lead to measurable
effects in the interface kinetics on the nanoscale. Thus effects
of other factors, if at all (like problems with sluggish struc-
tural rearrangements in noncoherent interfaces), in making
the atomic transfer more restrained should be additionally
considered. However, then an extra activation barrier should
be included into the atomistic model description, which was
not the case here.

IV. CONCLUSIONS

In our paper, we offer a natural resolution for a long-
standing paradox in diffusion. We have shown that the
growth rate of the diffusion zone (reaction layer) should not
go to infinity with decreasing time (as 1/4), just because the
diffusion permeability of the interface (being sharp either
because of the presence of a miscibility gap, or because of
the large diffusion asymmetry, or because there is an abrupt
jump of the composition in the diffusion couple at the begin-
ning) is finite. An expression for the changeover thickness X"
between the linear and parabolic regimes of the interface
shift in ideal or phase separating binary A(B) systems has
been derived. It was found that X", depending on the phase
separation tendency and the diffusion asymmetry (measured
by the strength of the composition dependence of the diffu-
sion coefficients), lies between 0.01 and 300 nm, illustrating
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that these effects can be measurable on the nanoscale.

The atomistic meaning of the interface transfer coefficient
K across coherent interfaces has also been discussed. It has
been shown that it is positive and proportional to the jump
frequency from the A-rich phase to the B-rich one, i.e., it is
a measure of the finite permeability of the interface.

Although it is almost exclusively accepted in the literature
that linear growth kinetics are the result of interface reaction
control, our results suggest that the linear or nonparabolic
growth of a reaction layer on the nanoscale cannot be auto-
matically interpreted by an interface reaction. Indeed linear
kinetics has been observed even in ideal systems (e.g.,
Ni/Cu, see Ref. 9), where a classical interface (separating
two phases) does not exist or deviation from the parabolic
law has been obtained in Ni/Au system?> where a well-
defined chemical interface is present according to the misci-
bility gap. Plausibly, the above conclusion, in contrast to the
well-known arguments in handbooks on diffusion, where lin-
ear or almost linear kinetics are interpreted by interface re-
action control, should also be applied for phase growth ki-
netics in many solid state reactions.
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APPENDIX A: BASIC EQUATIONS FOR VACANCY
MECHANISM

According to Ref. 27, in case of a vacancy mechanism,
the change in composition of A or B in plane i is given by

dcX
—=JK -

dt i,i+1° K:A’B’

where J, :+1 1s the net flux of K atoms from layer i to i+1 and
is defined as

_ \%
Jz +1 = Zv[c Cz+lrz i+1 z+lc Fz+l z]

Here, e.g., c and c are the fractions of K atoms and Vacan—
cies, respectlvely, in the ith layer (obviously c +c +c =1).
The atom-vacancy exchange frequencies can be given by ex-
pressions such as

K E1Ki+1
F”H vexp| — 7, K=AB.

In principle, El i+1 18 the activation bamer for the atom-
vacancy exchange, which is equal to E , the negative
value of the energy of the K atom in the layer i, and can be
given by

Ef =2,[(chy + L) Vak + (i + i) Vics)
+ zl(cAVAK + CEVKB)~

Here we note that the A atom-vacancy (I'?,,,) exchange usu-
ally differs from the B atom-vacancy (I';;,;) exchange fre-
quency, i.e., the intrinsic diffusion coefficients are different
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in this model, which are each composition dependent. If they
are not equal to each other, Kirkendall shift should also ap-
pear in real systems. However, for lack of vacancy sinks and
sources, its treatment is not possible in this atomistic model
at present.

After some algebra it can be shown that, e.g.,

Fl i+1Wir1 = 1_‘i,i+l and I‘I1+1 i 1_‘i+l,i’

where
B
+

) omenl-E).
T and w;=exp o)

The approximate equality in Egs. (Al) means that we

neglect c ’s compared to c ’s in additive compositions since

V<c Usmg these equatlons the net flux across the inter-
face can be written as

W1 = ew(—

1 1
Jr=zT Mefh— - e .
I 1’)’1{( ) ﬁw] B< >w2ﬁ

Here w, and w, are obtained from w;,; and w;, respectively,
applying the same assumptions as in Sec. II B. Using that the
vacancy composition of layer i can be calculated as®’

VBB + C‘lA(M + V) )

=(1=-c4 (z
(I =c)exp T

we arrive at the following expression of J/;

It =20 & (1+ @¥)Ac?

with
- cAg(1—<cA>><1_§>
¢ Act &

and

& exp) = [z,(c™) + (/- 1)05]M+V},

M+V
kT

& = exp)—[z,(ch+ 1)+ (- 1(cY]

Neglecting ¢" compared to 1 leads here also to an error of
maximum 25%. Thus using again the same condition to de-
termine the transition thickness (JAng), we obtain that

Xy =&X, (A2)

This means that the transition thickness deduced from di-
rect exchange or vacancy assisted mechanism diffusional
considerations differs only by the & factor, which has a
value of ~1-10 in practically important cases [for example,
&, =11 for a Ni/Cu-like system (see Appendix B, case (b))
and & =2 for a Ni/Au-like system (see Appendix B, case
(d))]. Thus the conclusions obtained for exchange mecha-
nism are qualitatively valid for a vacancy mechanism as
well, and the crossover thickness is even larger in the latter
case by the factor of &;.

Finally, note that Eq. (6) is also modified accordingly
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K=z, & (1 + ¢") = vz, exp(— Q/kT)

with  Qg=E(+(z,=2,)V+(z;+2,)M=E+(2,~2,) V+(2;+2,)/
(2Z)mkT.

APPENDIX B: NUMERICAL ESTIMATIONS OF THE
CHANGEOVER THICKNESS

In this section, the changeover thicknesses are determined
using Eq. (5), which is obtained for a direct exchange
mechanism. However, as can be seen from Eq. (A2), the
changeover thicknesses are in the same order of magnitude
for vacancy mechanism, too.

(a) m=0 and V#0. For large values of V/kT it is
expected that cg will correspond to the solubility limit
and taking a symmetrical miscibility gap (1-c,=cg), cg can
be estimated from the well-known expression, obtained
from a continuum regular solid solution model: ¢
=(1-cplexp[-ZV(1-2cp)/kT]=exp[-ZV/kT]. Further-
more, in this case, (¢)=1/2 can be put into Eq. (5) and due
to the symmetry of the diffusion profile, X:;:X;>X}k. Thus,
taking z;,=z,=4, e.g., for V/kT=0.36 as well as V/kT=0.5,
X"=0.12a and X"=0.04a, respectively. Although the ob-
tained numbers for X" are very low to be experimentally
measurable, the result that the changeover thickness de-
creases with increasing V is in accordance with the results of
simulations obtained in Ref. 11. In the beginning of the dis-
solution of the slower component into the matrix of the fast
diffuser, the deviation from the parabolic law was stronger
for smaller V values.

(b) V=0 and m#0. Now we can assume that for large
absolute values of m, cg is still <1 (in the order of
107'-1072, see Fig. 1 of this paper and also Fig. 26 in Ref.
10 for N1/Cu system with m=-22.3), i.e., we can take cg
=0.05. [In ideal systems, the value of ¢4 in Eq. (5) means the
value belonging to the kink of the composition profile when
the condition Jg=J; just fulfills.] It was found also in Ref. 9
that (c)=0.78 (for z,=6, z,=3). Thus, we get X X
=658a, which is in good accordance with the results of s1mu—
lations of Refs. 9 and 10: the transition from the linear to
parabolic shift took place after dissolution of several hundred
atomic planes. Indeed, AX.=823a, which agrees well with
this result. In order to illustrate the effect of the choice of ¢ &
here are the results for c;=0.025 and cz=0.1: X"=341a and

=1230a, respectively.

(C) m=0, V=0. The composition profile will be symmetri-
cal and thus (c)=1/2. The changeover thickness is X"
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:2X;=2ac3/ Ac. Since it is expected that cg will be in the
order of 0.05, X"=0.2a4. This can be compared with X"’
=06a, obtained from the condition that the difference be-
tween the composition profiles, calculated from the classical
Fick II law and from the atomistic equations of diffusion in
multilayers, should be less than 2%.'%2! Since X*ﬁ denotes the
thickness of the diffusion zone in the B phase, at which the
above two currents (J; at the beginning and Jg in the long
time limit) are equal to each other, while the X" =6a condi-
tion belongs to the limit when the process can be dominantly
described by Eq. (4), they agree reasonably well.

(d) Intermediate cases. For general cases (when both V
and m are different from zero), a more detailed analysis of
the shape of the moving interface would be necessary to
estimate the cg and (c) compositions. Fortunately, following
the calculation procedure described in Ref. 9, one can do the
estimation of {c). Furthermore, for large V/kT values, ¢ 5 can
be calculated from the regular solid solution model, and nu-
merical simulations of ¢z are necessary only for small V/kT
and large m values. For example, taking the V/kT=0.36 and
m=-13.8 values, used also in the simulations of Ref. 11 for
7/=z,=4, it was obtained that (c)=0.685 and ¢3=0.013. Thus
X EXZ: 19a. Now, it was found from experiments?? that in
Au/Ni system (for which the input parameters above suit
very well), the time dependence of the shift of the interface
indeed followed the 123 law, i.e., it was between a linear and
parabolic behavior during the dissolution of about six atomic
planes. This is in a good agreement with AX,.=6a. In order to
illustrate that the certain arbitrariness in the choice of cg still
does not have a big influence on the estimated value of X,
we give two results for m=-13.8, V/kT=0.09 (almost ideal
system) with z;=z,=4: X =23a and 87a, for ¢z=0.05 and
0.2, respectively.

(e) Temperature dependence of X". It can be seen that in
case (a) X" decreases with decreasing 7. On the other hand, it
follows from Eq. (5) that in case (b) (V=0, and m=-22.3
and thus taking as above cz=0.05 and (c)=0.78), X" in-
creases with decreasing temperature, while for case (c) (both
V and m are zero) X" is independent of T. Finally, in case (d)
if V/kT=0.36 and m=-13.8, there is a weak temperature
dependence because the two factors [corresponding to the
temperature dependence of the solubility limit as well as to
the factor containing m in the exponent of Eq. (5)] will com-
pensate each other, although still there is a small increase in
X" with decreasing temperature.
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