
Thin Solid Films 591 (2015) 363–367

Contents lists available at ScienceDirect

Thin Solid Films

j ourna l homepage: www.e lsev ie r .com/ locate / ts f
Investigation of the role of vacancy sources and sinks on the
Kirkendall-effect on the nanoscale
J. Tomán, C. Cserháti ⁎, Y. Iguchi, Zs. Jánosfalvi, Z. Erdélyi
Department of Solid State Physics, University of Debrecen, P. O. Box. 2, H-4010 Debrecen, Hungary
⁎ Corresponding author.
E-mail address: cserhati.csaba@science.unideb.hu (C. C

http://dx.doi.org/10.1016/j.tsf.2015.04.089
0040-6090/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Available online 8 May 2015
Keywords:
Kirkendall effect
Diffusion
Nanoscale
Vacancy sources and sinks
It is well-known that Kirkendall shift occurs in binary systems.We investigated diffusion on the nanometer scale
in the framework of our conceptual model [Erdélyi and Schmitz, Acta. Mater. 60 (2012) 1807]. Since on this
lengthscale the characteristic distances between the vacancy sources/sinks can be comparable to the dimensions
of the sample, the usual vacancy annihilation processes, leading to the Kirkendall shift, cannot operate. In this
situation, we studied the Kirkendall shift in planar geometry in case of miscible and restrictedlymiscible systems
by computer simulation.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Since its discovery in 1947, the Kirkendall effect has played an
important role in the development of solid state diffusion theory. Ernest
Kirkendall in his third and last paper in a series [1–3] on the diffusion of
Zn in α-brass presented the results of his diffusion couple experiment.
He electroplated a brass-bar with pure copper, but before that he placed
inert Mo-wires along each of the two surfaces to mark the original inter-
faces of the diffusion couple. After heat treatments of different times cross
sections of the diffusion couple were investigated and Kirkendall found
that the wires shifted inwards moving parabolically with the annealing
time. He explained this observation with that the Zn-atoms move much
faster outwards than the Cu-atoms inwards, causing the inner brass to
shrink. The first theoretical description was made by Darken [4] using
independent diffusion fluxes for the different constituents. Based on
these results, Seitz [5] and Bardeen [6] showed from atomistic point of
view, that the interdiffusion accompanied by vacancy mechanism lead
to Darken's equations if it is assumed that the vacancy concentration is
in local equilibrium. Vacancies should be created on one side and
annihilated on the other side of the diffusion couple for the Kirkendall
effect to occur.

Themanifestation of the Kirkendall effect, besides themarkermove-
ment, can be the appearance of diffusional porosity (Kirkendall voids [7,
8]), generation of stresses [8,9] and the deformation of the whole spec-
imen on the macroscopic scale [10]. Hollow nanoshell and nanowire
formation was also explained by the Kirkendall effect [11–13].

In this study we are presenting a finite volume method to describe
the interdiffusion process, as well as the Kirkendall effect on the
nanoscale.
serháti).
2. Diffusion fundamentals

As it is clear from Kirkendall's work, the effect can be best visualized
by the motion of inert markers placed along the diffusion zone. The
intrinsic diffusion fluxes of the components ji[mol/m2s], which reflect
the mobilities of the different species involved in the interaction, are
then defined with respect to this array of markers, called the Kirkendall
frame of reference:

ji ¼ −Di
∂Ci

∂x
: ð1Þ

Here Di[m2/s] is the intrinsic diffusion coefficient, Ci[mol/m3] is the
concentration of component i and x[m] is the position parameter. In
case of an A–B binary diffusion couple the equations for the intrinsic
fluxes are:

jA ¼ −DA
VB

V2
m

∂NA

∂x
; jB ¼ −DB

VA

V2
m

∂NB

∂x
; ð2Þ

where Ni is the mole fraction of species A or B, Vm [m3/mol] is themolar
volume,Vi [m3/mol] are the partialmolar volumes of thedifferent atoms
[14,15]. The latter is found through the tangent construction in the Vm

vs. Ni plot [16].
In writing Eq. (1) we followed the traditional Fick's approach, where

the atomic flux is related to the gradient of the concentration (in moles
per unit volume). There are of coursemore advancedmethods using the
Onsager flux expressions for the intrinsic atomic fluxes that involve
transport coefficients and thermodynamic forces acting on the atomic
species. In this case the gradient of concentration is replaced with the
corresponding gradient of mole fraction as required by the expression
for the thermodynamic forces [17,18,27].
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Themarker velocity depends on the difference in intrinsic diffusivities
of the species and the concentration gradient developing in the diffusion
zone at the marker plane composition [4]:

v ¼ − VB jB þ VA jAð Þ ¼ −VB DA−DBð Þ ∂CB

∂x
: ð3Þ

In these calculations it is always supposed that only a volumediffusion
controlled process operates. If this is the case, the inert markers
positioned at the original interface between the reactants are the only
markers that stay at a constant composition and move parabolically in
time (x2 ∝ t or x ∝ t1/2) during the whole interdiffusion process. The
velocity of these markers is:

vK ¼ dx
dt

¼ xK
2t

; ð4Þ

where xK is the position of the Kirkendall plane. The location of
the Kirkendall plane in the diffusion zone can be found graphically as
the intersection between the marker velocity plot 2tv vs. x and the
straight line 2tvK = xK given by Eq. (4). In order to draw the line
2tvK = xK, one needs to know the position of the plane in the diffusion
zone where the inert markers were located at the beginning of the dif-
fusion process, i.e. at time t = 0. However, if the total volume of the
specimen does not change during the interdiffusion, this position can
be determined by the usual Boltzmann–Matano method [14,15]. This
kind of measurement allows us to determine the intrinsic diffusion
coefficients at a single composition, namely that of the Kirkendallmarker
plane. To extend themeasurement over the entire concentration range, a
so-called multifoil diffusion technique has been introduced [19,20]. The
characteristic feature of such a sample is, that each end-member of the
diffusion couple is composed of several thin foils with fiducial markers
in between. Interdiffusion in such a multilayered sample will cause the
markers to move relative to the laboratory-fixed frame of reference. In
the particular case of [20], 20 μm Pd and 21 μm thick Ni foils were used
with ThO2 powder asfiducialmarkers (the diameter of the oxide particles
was ~0.5–1 μm). By measuring the shift of the markers, the Kirkendall
displacement was determined over the entire concentration range and
the displacement curve was constructed. Cornet [21,22] and later van
Loo [23] proposed a method to obtain the Kirkendall velocity and then
the intrinsic diffusion coefficient from the displacement curve. It was
found to be:

v ¼ 1
2t

y−xo
dy
dxo

� �
; ð5Þ

with xo being the original location of the markers at t = 0, y is the
displacement of the markers, i.e. y = x − xo and t is the annealing
time. As it is clear from Eq. (5), the position of the Kirkendall plane, as
marked by inert markers placed at the initial interface (xo = 0), is
given by vK = y/2t (vK is the velocity of the markers placed at the initial
contact interface). This also means that the Kirkendall plane can be
found graphically as the intersection between the marker velocity plot
(Eq. (5)) and the straight line (2tvK = xK), supposing that at t = 0
time the markers were at xo = 0.

In this study we are modeling the above described phenomenon.
Based on our conceptual model [24], a one dimensional finite volume
method was developed. The planar sample was divided into n slabs
(n = 2000), where each slab mimics a metallic foil in the above
described multifoil experiment. Note, that the number of the slabs
only influences the spatial resolution of the calculated concentration
profiles. In each computational cycle the total number of atoms
transported between the neighboring slabs was calculated from
which the change of composition as well as the thickness of the
slab were determined. During the calculations the walls of the slabs
are taken as markers in a multifoil experiment. From the calculations
we get the displacement curve by registering the positions of the cell
walls and the number of computation cycles. The velocity curve was
calculated from Eq. (5) as a usual procedure in case of multifoil
experiments.

For the computer simulation a simplified version of the model
described in [24] was implemented. In that work a complete set of
analytical equationswas developed in order to describe reactive diffusion
in spherical core shell nanostructures. The model takes into account
elastic stress, its plastic relaxation, as well as possible non-equilibrium
vacancy densities. Furthermore, thermodynamic driving forces are
included to model formation of intermetallic product phases in
intermediate composition range. Here we use the planar version of
these equations (see the Appendix A. in [24]). In addition the effect
and the change of the molar volume during the interdiffusion as
well as the consequences of the developing stresses were neglected.
On the other hand, considering that the vacancy concentration
changes due to the atomic fluxes as well as due to the activity of va-
cancy sinks and sources, the continuity equation written in the
Kirkendall reference system contains the vacancy flux and the term
of vacancy sources and sinks as well. Including these terms into Fick's
second law we arrive at:

∂Ni

∂t
¼ −Vm ∇ jixþ NiSvð Þ; ð6Þ

where Sv[mol·m−3·s−1] is the vacancy source term, i.e. the number
of vacancies created in unit volume per unit time. This expression is
very similar to [17,18]. We define sv as:

sv ¼ Sv � Vm ¼ Kr Co
v−Cv

� �
; ð7Þ

which is the rate of change of the atomic fraction of vacancies due to
creation/annihilation. Kr[1/s] determines the effectiveness of sinks and
sources, therefore sv is proportional to the deviation of the vacancy
concentration from it's equilibrium value. Note that Kr may vary with
spatial coordinates, depending on the spatial distribution of the sinks
and sources. Since Kr is a function of space, the solution of the diffusion
equation, i.e. the movement of the inert markers will not follow the so
called parabolic law (Note that taking constant Kr the solution adheres
to the traditional parabolic time evolution.). Another effect which may
alter the parabolic behavior of the diffusion process is the finite size of
the sample. When the diffusion profile reaches the end of the diffusion
couple, the kinetic of the process is changing.

3. Results of the computer simulation

The algorithmand the selection of the input parameterswere similar
to the ones presented in [24]. Several cases have been studied. In order
to validate our calculationswe performed simulations using the param-
eters given in [20,25]. The intrinsic diffusivities were concentration de-
pendent, but the ratio of the diffusivities was constant (DA / DB =
const.). The interdiffusion coefficient ( ~D ¼ CBVBDA þ CAVADB ) was
also constant in thewhole concentration range. Studies have been com-
pleted in ideal solid solutions with vacancy sinks and sources active
enough in every cell of the one dimensional finite volume model to
maintain equilibrium vacancy concentration during the whole pro-
cess. Fig. 1 displays a representative plot showing that our model
safely reproduces the calculations, implemented in the traditional
Darken's model [25], as well as the experimental observations re-
ported in [25]. The scale on the horizontal and vertical axes is in arbi-
trary units on the figures. The dashed and the solid lines mark the
displacement and the velocity curve respectively. The straight line repre-
sents the (2tvK = xK) equation. The interdiffusion coefficients published
in [20] were used to calculate the concentration profiles and the corre-
sponding Kirkendall displacement and velocity curves. It can be clearly
seen, that the displacement aswell as the velocity curves are almost ex-
actly follow the trace of the experimental data presented
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Fig. 1. Representative plot, showing the validity of our model. The displacement (dashed
line) and the velocity curve (solid red line) on plot (a) are the same as in Figs. 10 and 14
in [20]. Plot (b) shows the concentration dependence of the interdiffusion coefficient, as
well as the intrinsic diffusivities of the different species. The experimental data-points
are replotted from [20].
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Fig. 2. In case of ideal solid solution plot (a) shows the displacement (dashed line) aswell as
the velocity curve (solid red line) when the vacancy sources and sinks are evenly active at
every slab. On plot (b) the same is presented but with a Gaussian vacancy source and sink
distribution (dot-dashed line, see the text). Plot (c) shows the concentration dependence
of the diffusivities of the different species.
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(displacement curve) on Fig. 10 and the velocity curve on Fig. 14 in [20].
Fig. 1b demonstrates the composition dependence of the diffusivities.
Note the logarithmic scale on the vertical axis.

We extended our studies to immiscible systems too and also by
changing the arrangement of vacancy sources and sinks along the
sample. Concentration dependent diffusivities have been used with
various composition dependence.

We simulated the diffusion process inwhich the diffusivities depend
exponentially on the concentration (for instance Di = Dioexp(mNi),
where i = A or B), moreover the ratio of the diffusivities is constant.
Fig. 2a shows the displacement (dashed line) as well as the velocity
curve (solid red line) when the vacancy sources and sinks are evenly
active in every slab (foil). On Fig. 2b the same is plotted but with a
different vacancy source and sink distribution. As it was mentioned
before, Kr in Eq. (7) may vary along the sample. It was supposed that
the vacancy sources and sinks are active enough in the slabs in the
very vicinity of the starting interface to maintain the equilibrium
vacancy concentration all the time (Kr = 1/s) but beyond that their
activities approach to zero following a Gaussian distribution. For
the sake of simplicity we will call this distribution of vacancy sinks
and sources Gaussian in this paper (see the dot-dashed curve on
Fig. 2b). This is a practical assumption since there are always impuri-
ties at the contact plane. Fig. 2c demonstrates the composition
dependence of the diffusivities. Note the logarithmic scale on the
vertical axis.

As it was expected based on the consideration of Philibert [15], the
maximum of the velocity curve and that of the displacement curve
coincide with the position of the Kirkendall plane for the case of constant
ratio of intrinsic diffusivities in both cases. On the other hand, the velocity
curve in Fig. 2b shows a local maximum at the Kirkendall plane (which in
this case coincides with the Matano plane), the global maximum is more
to the left. This means that although the Kirkendall plane is stable, the
markers placed on positions where the gradient of the velocity curve is
negative (left to the Kirkendall plane) get closer to each other during
the process, which means another condensation of the markers, which
is different from the Kirkendall plane. In case of a system having a
miscibility gap similar results were obtained. The maximum of the
velocity curve and displacement curve in this case also coincides with
the position of the Kirkendall plane and altering the distribution of the
sources and sinks to a Gaussian one, the velocity curve changes consider-
ably, showing another local maximum, indicating similar behavior as in
ideal solid solution.

Fig. 3a shows again the displacement as well as the velocity curve
when the vacancy sources and sinks are evenly active in every slab
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Fig. 3. In case of a solid solution with a miscibility gap, plot (a) shows the displacement
(dashed line) as well as the velocity curve (solid red line) when the vacancy sources
and sinks are evenly active at every slab. In plot (b) the same is presented but with a
Gaussian vacancy source and sink distribution (dot-dashed line). Plot (c) shows the
concentration dependence of the diffusivities of the different species.

 0

 2

 4

 6

 8

 10

 12

 14

−60 −40 −20 0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

di
sp

la
ce

m
en

t [
ar

b.
un

its
]

K
r [

1/
s]

position [arb.units]a)

2tv
displacement

y=x
Kr

−15

−14

−13

0.0 0.2 0.4 0.6 0.8 1.0

lo
g 10

D

atomic fraction of A

D
~

b)

DA
DB

Fig. 4. On plot (a) the maximum of the Kirkendall velocity (solid red line) is situated at the
Matanoandnot at theKirkendall plane. In this calculationKr=1 in every slab. TheKirkendall
plane is unstable in this case (see the text). Plot (b) shows the concentration dependence of
the diffusivities of the different species.
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(foil) and in Fig. 3b the result of a calculation with a Gaussian vacancy
source and sink distribution is plotted. In this system an exponential
concentration dependence of the intrinsic diffusion coefficients was
supposed, no other constrain was taken into consideration, moreover
there is also a miscibility gap (0.25 b NA b 0.75). It can be seen that the
maximum of the Kirkendall velocity is situated at the Matano and not
at the Kirkendall plane. On the other hand, the maximum of the
displacement and the position of the Kirkendall plane coincide. The
same is true if we look at Fig. 3b, where the vacancy sources and sinks
have different distributions. As can be seen, in this case as well there
are other local maxima of the velocity curve, indicating again that the
markers are getting closer to each other in the vicinity of these peaks.
This practically would mean that the markers are “attracted” by these
maxima implying three weak places along the diffusion direction. The
shape of the reconstructed velocity curve on Figs. 2b and 3b is due to
the space dependence of Kr effectiveness factor, as well as the finite
size of the film.

The presented plots so far showed only stable Kirkendall planes in a
sense, that those markers which, at the end of the annealing, ended up
slightly ahead of the intersection point of the velocity curve and the
straight line (2tvK = xK), would slow down (lower velocity) and if
these markers were behind this plane, they would move faster (higher
velocity). In other words, the plane located at the intersection point
tends to attract inert markers in its vicinity.

According to [21,22,25], there is no reasonwhy themaximum in the
velocity curve, the maximum in the displacement curve and the
Kirkendall plane should coincide. On Fig. 4a we show a plot, where this
is not the case. Moreover the Kirkendall plane in this case is unstable
since, following the earlier argument, the markers which are slightly
ahead of the Kirkendall plane, move faster and markers slightly behind
this plane will migrate slower. Fig. 4b demonstrates the composition
dependence of the diffusivities.

Experimental verification of these ideas can be found in previous
studies on diffusion phenomena and the Kirkendall effect in the β′-
ordered AuZn phase (B2 structure) of the binary Au–Zn system [26].

From these calculations it is clear that our model gives unexpected
results concerning the position of the fiducial markers used in a
so-called multifoil experiment. Applying real concentration dependent
diffusivities and a spatial distribution of vacancy sinks and sources,
even in these simple cases, we found, that there is indeed a Kirkendall
plane which, by definition, is the plane that stays at a constant compo-
sition and moves parabolically in time during the whole interdiffusion
process. On the other hand, there are other places in the diffusion
zone which attract markers. That place or even those places do not
move parabolically in time but, as the process goes further, attract
more and more particles. As a result, such a place may become a
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problematic microstructural feature in any joint, because of higher
mechanical failure risk at this plane.
4. Conclusions

Interdiffusion on the nanometer scale was investigated in the
framework of our conceptual model [24]. We studied the Kirkendall
shift in planar geometry in case of miscible and restrictedly miscible
systems by computer simulation. A one dimensional finite volume
method was developed, in which the sample was divided into n slabs.
The slabs mimicked the foils in the so called multifoil experiment.
From the calculations we get the displacement as well as the velocity
curves by registering the position of the cell walls and the number of
computation cycles. Calculations were performed in two different
distributions of vacancy sources and sinks i.e.: the sources and sinks
are distributed evenly in thewhole sample, or they followed a Gaussian
distribution, having the maximum at the location of the Kirkendall
plane.

It is clear that our results, concerning the position of the cell walls
which act as markers in a multifoil experiment, are different from the
earlier ones. Applying realistic situations, like concentration dependent
diffusivities as well as spatial distribution of vacancy sinks and sources,
even in very simple cases it was found that besides the Kirkendall plane
there are other places in the interdiffusion specimen which attract
markers. Markers placed to positions where the gradient of the velocity
curve gets negative during the process get closer to each other as time
goes on, resulting another condensation of themarkers, which is different
from the Kirkendall plane. That place, or even those places do not move
parabolically in time but, as the process goes further, attract more
and more particles, getting weaker and weaker in mechanical point
of view.
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