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INTRODUCTION 

 
The dawn of nano -scale science can be traced to the classic talk of Richard Feynman 

gave on December 29th, 1959 at the annual meeting of the American Physical Society a
the California Institute of Technology. In this lecture, Feynman suggested that there exists 
no fundamental reason to prevent the controlled manipulation of matter at the scale of 
individual atoms and molecules. Twenty-one years later, Eigler [ 1] and co-workers 
constructed the first man -made object atom-by-atom with the aid of a scanning tunnelling 
microscope. This was just 7000 years after Democritus postulated atoms to be the 
fundamental building blocks of the visible world. The field derives its name from the SI-
prefix nano, meaning 1/1,000,000,000 of something. A nanometre is thus 1/1,000,000,000 
of a metre, which is around 1/50,000 of the diameter of a human hair or the space occupied 
by 3-4 atoms placed end-to-end. 

Recent fundamental investigations and the applied research in materials science 
concentrate in many aspects on the physics and technology of nanostructures. The new 
properties of materials at nano-scale dimensions manifest itself in peculiar mechanical, 
chemical, magnetic, optic and biological characteristics. The possible application s cover a 
wide range from the construction of materials for micro - and nanoelectronics to biomedical 
applications. Applications of these require, however, the knowledge of parameters and 
physical laws valid at nano-scale. 

Grain boundaries are, generall y, diffusion short circuits; consequently, the major part 
of material transport will occur by grain-boundary diffusion in nanomaterials where a large 
amount of atoms can lie on grain or interphase boundaries (50% for a grain size equal to 5 
nm; 20% for a grain size equal to 10 nm). An interesting question arose during the 
interpretation of the already existing data on grai -boundary diffusion in nanocrystalli ne 
materials: whether the grai -boundary diffusion coeff icients measured in these alloys are 
identical to those obtained in microcrystalli ne state or not? An answer to this question 
would solve a fundamental problem concerning to the structure of GB in these materials 
weather it is a well defined and more or less ordered one as in coarse grained materials or  a 
disordered like frozen-gas structure. In Chapter IV we try to answer this question b
comparing the temperature dependence of Ag grain-boundary diffusion in Cu measured b
Auger electron spectroscopy in C -kinetics regime with triple products determined 
previously using radio tracer technique in B-kinetics regime. Furthermore the temperature 
dependence of the surface segregation factor will be also extracted. 

We will see in Chapter III that diff usion in nanostructures has other challenging 
features even f the role of structural defects (dislocations, phase- or grai -boundaries) can 
be neglected. This can be the case for diff usion in amorphous materials, in epitaxially 
grown highly ideal thin films or multilayers where diffusion along short circuits can be 
ignored and “only” principal diff iculties, related to nanoscale effects, raise. For example, 
one of the most important differences for diffusion in such crystalli ne materials – as 
compared to diffusion for long distances (orders of magnitude longer than t he atomic 
spacing) – is that the continuum approach cannot be automatically applied. Furthermore, a
short diffusion distances in case of interdiffusion, due to the composition dependence of 
the diffusion coeff icients, the shape of the interface can be als o different from the well -
known interfaces obtained in bulk samples. Moreover, in these materials, at short diffusi



 

times, when the gradient of concentration is large, the usual parabolic law of diffusion can 
be violated, leading to a linear law even if there is no reaction control at al. These different 
situations will be investigated both experimentally and by simulation in different A/B 
couples. 
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Chapter I 

THEORETICAL ASPECTS 

I .1 VOLUME DIFFUSION 

I .1.1 Fick’s equations 

Diffusion of atoms in solids can be described by the Fick’s equations. The first 
equation relates the flux ( j

�

: number of atoms crossing a unit area per unit t me) to the 

gradient of the concentration (ρ: number of atoms per unit volume) via the diffusion 
coefficient tensor D̂ : 

 
 ρgradD̂j −=

�

. (I.1) 
 
This equation permits to determine the diffusion coefficient in cases, where the 
concentration gradient is time independent (steady state regime).  

In non steady state regime, the diffusion flux and concentration are function of time 
and position. In order to be able to determine the diffusion coefficient, it is necessary to 
take into account the conservation of matter. For not interacting particles (no chemica
reaction, no reactions between different types of sites in a crystal, etc.), this is the 
continuity equation:  

 
 

0div =+
∂
∂

j
t

�ρ
. (I.2) 

 
Combining equations (I.1) and (I.2), one obtains the second Fick’s law: 
 
 ( )ρρ

gradˆdiv D
t

=
∂
∂

. (I.3) 

 
For cubic crystals and isotropic media, the diffusion coefficient tensor reduces to a 

scalar D, thus the first Fick’s law is: 
 

 ρgradDj −=
�

. (I.4) 
 

Moreover, if the concentration varies only in the x direction, equation (I.3) reduces to: 
 
 








∂
∂

∂
∂=

∂
∂

x
D

xt

ρρ
. (I.5) 

 
If, additionally, the diffusion coeff icient is independent of the concentration, equation (I.5) 
can be written in the following form: 
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2

2

x
D

t ∂
∂=

∂
∂ ρρ

. (I.6) 

 
From mathematical point of view, equation (I.6) is a second order, linear partial 

differential equation. Initial and boundary conditions are necessary to solve it [ 1]. 

I .1.2 Atomic aspects of volume diffusion 

Let us consider a system of migrating particles. The paths of particles belonging to 
time t are represented by vectors ( )tR

�

. The projection on the Ox axis is denoted b X and 

is equal to the sum of the projections xi of the elementary jump vectors denoted by ir
�

. 

Since the average value o xi is: 
 

 



= ∑

=∞→

N

i
i

N
i x

N
x

1

1
lim , (I.7) 

 
considering a particle making n jumps (on average) during the time t, it can be written 
[2,3]: 

 

 



= ∑

=∞→

N

i
i

N
x

N
nX

1

1
lim . (I.8) 

 
In the same way, the quadratic mean free path can be given by [ 2] : 

 

 ( )















+= ∑ ∑∑

= =
≠
=

∞→

N

i

N

i

N

ij
j

jii
N

xxx
N

nX
1 1 1

22 2
1

lim . (I.9) 

 
If the migration of particles is random (Brownian migration or random walk [ 4,5]), the 

first Fick’s equation is [2]: 
 

 
x

c

t

X
j x ∂

∂−=
2

2

, (I.10) 

 
if the Brownian diffusion coeff icient in the direction x is defined by the relation:  
 

 
t

X
Dx

2

2

= . (I.11) 

 
Replacing the quadratic mean ree path by its expression (I.9) and neglecting the second 
term with double summation (the double product terms of this relation compensate each 
other for a random walk, since jumps in opposite directions have the same probabili ty), one 
obtains: 
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i
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x xx

Nt
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D

Γ=



= ∑

=∞→
, (I.12) 

 
where Γ = n/t is the total jump frequency of atoms. Note that the Brownian diffusion 
coefficient is often approached by the diffusion coefficient of an isotope ( or tracer) Dx

*. 
We recall that, theoretically, Dx

* = Dxf, where f is a correlation factor [ 6]. Its presence is 
necessary because the migration of the marked (or tracer) atoms is not always completely 
random [7], i.e. the second term with double summation i n (I.9) cannot be neglected. In the 
case of self-diffusion f (≤ 1) is usually a numerical factor depending on the crystal structure 
and diffusion mechanism. For impurity or heterodiffusion (the tracer atoms are different 
from the atoms of the matrix), this factor can depend on the temperature as well. 

In a crystal, the migration of atoms takes place by site -by-site. The positions of these 
sites are perfectly defined by the structure. If Γs denotes the frequency along direction s 
and Z is the number of neighbouring sites, one can write: 

 

 ∑
=

Γ=Γ
Z

s
s

1

. (I.13) 

 
Since the proportion of jumps in a given direction is equal to Γs/Γ, 
 

 ∑ ∑
= =∞→

Γ=
Γ
ΓΓ=Γ=

Z

s

Z

s
sss

s

N
x xxN

N
xD

1 1

222

2

11
lim

22
. (I.14) 

 
According to this expression, in the case of selfdiff usion by vacancy mechanism, it is 

possible to determine the diffusion coefficient along Ox if the lattice parameter is known.  

 

x 

O 

a 

a/2 

 
 

Figure I.1 Elementary jump for vacancy mechanism in a BCC structure (
�

 : vacancy ; �  : atoms). 

In an isotrop crystal with body centred cubic (BCC) structure (or face centred cubic – 
FCC), the jumping lengths and frequencies are the same for the 8 (FCC: 12) directions [see 
Figure I.1 and Figure I.2]. Applying relation (I.14) for the direction Ox, one can write for 
both of the structure types: 

 

 2
2

2
8

2

1
a

a
D ssx Γ=Γ





= . (I.15) 
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 a   

x   

O   a/2   

 
 

Figure I.2 Elementary jumps for vacancy mechanism in a FCC structure. Only the elementary jumps 
that have the projection on the axis Ox different from zero are marked by arrows (

�
 : vacancy ; 

�  : atoms). 

 

I .1.3 Interdiffusion 

I.1.3.1 ATOMIC FLUXES 

According to the Onsager’s theorem [3,6,8], in an A/B binary system, if the onl
driving force is the gradient of the chemical potential (µi), the flux of i (A,B) atoms relative 
to the lattice planes can be given as:  

 
 iiii Lj µgrad−=

�

, (I.16) 
 

where Lii is the ‘Onsager coefficient’ . The chemical potential can be expressed in the 
following way [9]: 
 

 ,ln0 iiBi cTk γµµ +=  (I.17) 
 
where kB is the Bolzmann-constant and T the absolute temperature. Moreover, ci and γi are 
the atomic fraction and the thermodynamic activity coeff icient, respectively. Combining 
equations (I.16) and (I.17) and using that ρi∂ ci/∂ρi = ci and ρA + ρB = ρ = const, one 
obtains: 
 

 iii
i

iiB
i

i

i

i

iiB
i D

TLk

c

TLk
j ρρ

ρ
ργ

ρ
gradgradgrad

ln

ln
1 −=Θ−=








∂
∂

+−=
�

, (I.18) 

 
where Θ is the thermodynamic factor. Di is the intrinsic diffusion coefficient which relates 
to the Brownian diffusion coeff icient [see I.1.2] Di by Θ : 
 

 i
i DD Θ= . (I.19) 
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I.1.3.2 INTERDIFFUSION COEFFICIENT 

When two species of atoms intermingle, their rate of mixing depends on the diffusion 
rates of both species. For diffusion in an isolated system, an interdiffusion coefficient (or 
mutual diffusion coefficient or chemical diffusion coefficient) can be defined, which gives 
the rate at which the original concentration gradient disappears. 

When the two species in an interdiffusion experiment have unequal intrinsic diffusion 
coefficients, there is a net atom flux across any plane in the diffusion zone. Thus, more 
atoms will be on one side of the interface after diffusion which results a net volume 
transport. This is equivalent to the creation of a non-uniform stress-free strain [10]: on one 
side of the diffusion zone contractions, while on the other side extractions will arise. The 
stress field related to this stress-free strain contributes to the atomic fluxes across the 
driving force - Ω grad p, and could cause a plastic deformation (by creep or by dislocation 
glide) as well. The plastic flow obviously relaxes the stress developed and results in a 
complex feed-back effect [11]. The description of the interdiffusion process then depends 
on the ratio of the relaxation time of plastic f ow, τ, and the time of diffusion t. 

If t » τ the relaxation of stress can be considered to be fast and almost complete. In this 
case the stress gradient as a driving force can be neglected. However, the relaxation o
stresses is equivalent to a convective transport in the diffusion zone: e.g. for vacanc
mechanism, expansion as well as contractions on different sides of the diffusion zone can 
be realized by annihilation and creation of vacancies at edge dislocations. Fro
experimental point of view, if there is no change in the lateral dimensions of the 
specimens, a marker wire introduced originally at the interface appears to move toward one 
end of the diffusion couple. This effect, which was first observed by Kirkendall [12,13], is 
called the Kirkendall shift (see Figure I.3).  

The marker wire is assumed to identify a given lattice plane. The flux ij
�

 of i (A, B) 

species with respect to a given lattice plane (or in the lattice frame) can be expressed in 
terms of intrinsic diffusion coeff icients as in equation (I.18). If the plane is moving with 
velocity v

�

 with respect to the ends of the diffusion couple (or in the laboratory frame of 
reference), the flux ij ′

�

 of i (A, B) species with respect to the ends of the diffusion couple 

is: 
 

 ( ) ( ) ( ) ( )trtrtrjtrj iii ,,,,
����

�

�

�

vρ+=′ . (I.20) 
 
In a two component crystal of constant dimensions and atom density (the number of 

lattice sites is conserved [14], i.e. ∂(ρA + ρB)/∂t = 0), it is necessaril y true tha BA jj ′−=′
��

 and 

xcxc BA ∂∂−=∂∂ . Thus the total atom flux tj ′
�

 with respect to the ends of the couple is: 

 
 ( ) 0grad =+−−=′+′=′ v

�

���

ρρ ABABAt DDjjj . (I.21) 
 

The Kirkendall velocity can then be written in the following form: 
 

 ( ) ABA DD ρ
ρ

grad
1 −=v

�

. (I.22) 

 
Therefore, using equations (I.4), (I.20) and (I.21) the fluxes of A and B atoms can be 
expressed by: 
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 ( ) ABAABBA DDjj ρρρ
ρ

grad
1 +−=′−=′

��

. (I.23) 

 
Consequently, the interdiffusion can be characterised by only one diffusion coefficient 
defined in the following way: 

 

 ( ) BAABBAAB DcDcDDD +=+= ρρ
ρ
1

:
~

, (I.24) 

 
where ci = ρi/ρ (i = A,B) is the atomic fraction. Equation (I.24) is called as Darken’s 
formula [6]. 

 

xK

xK

xK

A B

jA

jB

(a)

(b)

(c)

xKxK
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xKxK

A B

jA

jB

(a)

(b)

(c)

 
Figure I.3 Ki rkendall shift. (a) During the diffusion, A atoms diffuse to the right across the marker plane 

(designed by the dashed line) while B atoms diffuse to the left. (b) If A diffuses faster than B, more 
atoms are on the right of the markers after diffusion than before. Also fewer atoms are on the left. 
This expands the crystal volume on the right and shrinks that on the left. If the plane containing the 
markers is held in a fixed position, the crystal moves to the right by a distance xK. The hollow 
circles indicate the region with a surplus of vacancies, where porosity may be found. The plus signs 
indicate the region where extra planes are added. (c) If the crystal is then moved into alignment 
with diagram (a), it appears that the wires have moved to the left a distance xK. 

 
On the other hand, if t « τ (but t is long enough for the development of the stress 

gradient) then we can be in a second limi t, when practically there is no stress relaxation at 
all ( 0≅v

�

). An additional term proportional to the stress (pressure) gradient should be 
added to the right hand side of equation (I.4) and it can be shown [15,14] that the mixing 
process is controlled by: 
 

 
BBAA

BA
NP DcDc

DD
D

+
=:~

, (I.25) 
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Here the index NP indicates that this is the so-called Nerns -Planck limit. After an initial 
transient period the pressure gradient developed makes the two fluxes equal, i.e. the 
volume transport will be determined by the slower intrinsic diffusion coeff icient (series 
coupling of currents) in contrast to the Darken’s limit (parallel coupling), where the 
chemical diffusion coef ficient is determined by the faster one. 

I.1.3.3 EFFECT OF STEEP CONCENTRATION GRADIEN  

The first analysis of diffusion taking into account a steep concentration gradient as well 
was given by Hill ert [ 16] in 1956. He used a regular solid solution model considering only 
neares -neighbour interactions between the atoms to calculate the free energy of a binar
solid solution with composition variations in one dimension. Adopting an analysis of 
Becker [ 17], Hill ert showed that the excess local free energy due to a concen tration 
gradient is proportional to the square of the gradient. Accordingly, equation (I.6) will 
contain an extra term proportional to ∂4ρ /∂x4. Considering discrete atomic planes and 
solving the equations numerically, Hill ert de ermined the equili brium distribution [ 16], 
afterwards he calculated the kinetics of the process [18]. 

In contrast to Hillert, Cahn and Hilli ard (1958) [ 19] considered a continuu
approximation in which three -dimensional composi ion variations might arise. Expressing 
the local free energy as the sum of Taylor series of local composition derivates and taking 
just a few terms, Cahn and Hilli ard also found that the local free energy depends on the 
square of the local composition gradient [see I.1.3.3 a)]. Furthermore, Cahn (1961, 1968) 
[20,21] gave the continuum diffusion equation in this approximation and determined its 
analytic solutions for small departures from homogeneity.  

In 1969, Cook et al.  [22,23] combined the two previous models. They considered 
three-dimensional composition variations on a discrete lattice and did not make any 
assumptions about the thermodynamics of the binary solution. Furthermore, they showed 
that the continuum and discrete approximations give the same results only for Λ>6d, 
where Λ is the wavelength of the composition variation and d is the interatomic distance in 
the direction of diffusion. 

More recently (1990), Martin [24] constructed a one-dimensional discrete model [see 
I.1.3.3 b)] in which the cohesive energy and the activation barrier for interatomic 
exchanges can be calculated e.g. from pair interaction energies. Based on this kinetic 
model, equations for the atomic fluxes are given. It was also shown that these equations 
drive the system to a correct (local) equilibrium. Furthermore, it was also ill ustrated that in 
the framework of the Bragg-Willi ams approximation used, the gradient energy effects were 
already naturally included into this model. 

a) Gradient energy: Cahn-Hill iard model 

Cahn and Hilli ard supposed that the local free energy depends not only on the loca
composition, but also on the composition of the surrounding volume. It is conve nient to 
express the local free energy in Taylor series form. Neglecting the higher order terms and 
considering one dimensional composition variations, Cahn and Hilli ard showed that the 
free energy of a solid solution consisting of A and B atoms can be expressed in the 
following way [19]: 

 

 ( ) dx
x

c
cfF ∫



















∂
∂+=

2

0 κA , (I.26) 
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where A is the cross-sectional area of the system normal to the x direction, c the atomic 
fraction of A atoms, f0(c) the local free energy per unit volume in a homogeneous system, 
and κ the gradient energy coefficient which is a combination of the Taylor coefficients. 
Note that κ can be calculated from a regular solid solution model and it is proportional to 
the ordering energy (κ ∝ V) [25]. 

In the following, the influence of the gradient energy term will be studied. For this 
purpose, we will write the diffusion equation containing this term. It is always possible to 
choose a frame of reference such that the flux of B atoms is equal and opposite to the flux 
of A atoms [see I.1.3.2]. Using the mobility (always positive, Mi) and the partial free 
energies per unit volume (chemical potentials per unit volume, µi) instead o Di and ρi in 
equation (I.4), and supposing that ρA = ρB = ρ = 1/Ω (ΩA = ΩB) and MA = MB = M, the 
interdiffusion flux can be then expressed by: 

 

 ( )BAx
MJ µµ −

∂
∂=− ~

. (I.27) 

 
The quantity µA-µB) corresponds to the exchange in free energy on reversibly replacing a 
unit volume of B atoms with A atoms. If the volume density of atoms is constant, it is 
given by: 
 
 

( )
2

2

0

2

0 2
x

c
f

x

c
cf
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where f0’  = ∂f0/∂c. Therefore, the interdiffusion flux is: 
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where f0’’ = ∂2f0/∂c2. Supposing that M, f0’’  and κ are composition independent (which is 
reasonable when the deviations from homogeneity are small), and taking the divergence of 
the flux, the following linearized diff usion equation is obtained:  
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where D

~
 is the interdiffusion coefficient and i  D

~
 = Mf0’’ . Considering a periodical 

concentration modulation, a particular solution of equation (I.30) is: 
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where c0 is the average atomic fraction of the A component and h (h=2π/Λ, Λ the 
wavelength of the composition modulation) the wave number of the composition 
modulation. The amplitude A of this harmonic wave may decay or growth in the function 
of the sign of the amplif ication actor R: 
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In the presence of a steep concentration gradient, therefore, there is an effective 

interdiffusion coefficient ΛD
~

, which depends on the wavelength of the modulation. If there 

were no gradient energy effects (κ = 0), the interdiffusion coefficient would be 
independent of Λ. 

Equation (I.31) describes the evolution of one harmonic composition wave only. In 
artificially modulated materials, the periodic composition variation can be described by the 
sum of such types of waves. The advantage of the linearized equation (I.30) is that this su
is also a solution and its components can be considered independently. The equations 
(I.30) and (I.32) are, therefore, very useful in the analysis of the behaviour o
compositionally modulated materials. On the other hand, the linearity has a disadvantage: 
it is valid only for small amplitude modulations. 

Moreover, even considering κ and f0’’  in the frame of the regular solid solution model 
[25], the behavior of materials can be classified in three categories: when κ > 0 and 
f0’’  < 0, we are in the case of a spinodal decomposition; when κ > 0 and f0’’  > 0, we have a 
phase separation; and when κ < 0 and f0’’  > 0, we have an ordering tendency. The forth 
case is unlikely and impossible for a regular solution where only nearest neighbour 
interac ions are taken into account. The detailed analysis of these cases can be found in  
reference [25]. 

b) Interdiffusion on atomic scale: Martin’s model 

In this part, we will consider only one dimensional diff usion in a discrete latt ice. The 
model described is based on Martin’s work [ 24]. 

Statistical description 

We consider N lattice planes normal to the X axis (Figure I.4): there are Ω atomic sites 
on each lattice plane. Each site has zl nearest neighbours on the same plane and zv on the 
neighbour planes. For example for BCC[100] zl=0, zv=4 ; for FCC[111] zl=6, zv=3. The 
coordination number is Z=zl+2zv. Besides, we suppose that there are no vacancies, i.e. in a 
binary system, the A and B atoms occupy ever N×Ω atomic site. Be {A1; …; Ai; …; AN} 
the number of A atoms on the planes 1, …,i ,…, N, and ci=Ai/Ω atomic fraction; c(x) gives 
the concentration profile [here x=(i-1)d, where d is the distance between the planes in the X 
direction]. 
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Figure I.4 One atom in plane i has zl nearest neighbours in the same plane and zv in plans (i-1) and 
(i+1). The coordination number is Z=zl+2zv, there are Ω lattice sites in each plane. The number of 
A atoms in plane i is Ai. In the figure zl=4, zv=4 and Z=zl+2zv=12. 

 
We can create an N dimensional vector A

�

 from the {Ai} quantities. In this way, it is 
possible to define an internal energ E( A

�

) for each atomic configuration. At equili brium, 
the probability for a given configuration to occur is:  

 
 ( ) ( ) ( )[ ]AEAWAP

���

β−= − exp1Z , (I.33) 

 
where β=1/kBT, Z is the normalisation factor (partition function), and W( A

�

) is the number 
of microscopic states of the configuration A

�

: 
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Here the summation is performed over all possible arrangements of the A and B atoms that 
keep the overall composition constant. 

Equation (I.33) may be rewritten: 
 
 ( ) ( )[ ]AAP

��

Fβ−= − exp1Z , (I.35) 
 
where 
 
 ( ) ( ) ( )ATSAEA

���

−=F , (I.36) 
 ( ) ( )AWkAS B

��

ln= . (I.37) 
 

( )A
�

F  and ( )AS
�

 are the Helmholtz energy and configurational entropy. 
According to the equation (I.35), the most possible configuration is which has the 

minimal free energy. Therefore, one has to calculate the free energy of the binary system, 
then to find its minimum with the condition that the number of particles is constant 
(extreme value problem). 

For interior planes ( i=2,…, N-1), the result (Bragg-Willi ams description, taking into 
account nearest neighbour interactions) is: 
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where V=VAB-(VAA+VBB)/2 is the ordering energy and µ the chemical potential. In 
principle, it is possible to determine the configuration of equili brium from these equations, 
but it is not an easy problem. {Note that in equation (I.38), the term 2V(ci+1 + ci-1 - 2ci) 
presents the naturally involved gradient energy (2κ ∂2c/∂x2) [see equation (I.28)].} Instead, 
Martin [24] constructed a procedure allowing not only the calculation of the equili brium 
configuration but to follow the time evolution of the system as well  

Deterministic kinetic description 

Let us introduce the exchange frequency (jump frequency) Γi,i+1 with which an A atom 
in plane i exchanges with a B atom in plane ( i+1), and Γi,i-1 denotes the exchange 
frequency with which an A atom in plane i exchanges with a B atom in plane ( i-1). The 
variation in the concentration in plane i is given by the foll owing equation: 
 
 

1,,1 +− −= iiii
i JJ

dt

dc
 (I.39) 

 
where Ji,i+1 is the net flux [24] (the atomic flux is j i,i+1 = Ji,i+1/A, where A is the area of the 
specimen perpendicular to the direction of the diffusion) of A atoms between the planes i 
and (i+1) : 

 
 ( ) ( )[ ]iiiiiiiivii cccczJ ,111,11, 11 +++++ Γ−−Γ−= . (I.40) 

 
For Ji-1,i a similar expression can be written. ci is the probabili ty that a site in plane i is 
occupied by an A atom and zv(1-ci+1) gives the probabili ty that one site in plane ( i+1) is 
occupied by a B atom. Thus, equa ion (I.39) can be given by: 
 
 ( ) ( ) ( ) ( )[ ]iiiiiiiiiiiiiiiiv

i ccccccccz
dt

dc
,111,1,111,1 1111 ++++−−−− Γ−−Γ−+Γ−−Γ−−= . (I.41) 

 
From this equation, the steady-state condition is:  
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This condition should coincide with (I.38). In this case it would be possible to find the 
same equili brium state by equations (I.41) and (I.38). Additionally, such a way we could 
also calculate the transition states. 

Martin [24] showed that adequate choices for jumping frequencies exist. Assuming 
Arrhenius-type temperature dependence: 
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where ν denotes the attempt frequency and Ei,i+1 is the activation barrier of diff usion, for 
instance, the foll owing choice [26]: 
  
 ( )[ ]( )

( )[ ]( )
( ) 1,,2

11

12
0

1,

−=+−
−+++
−++−=

+−

+++

NiVVZ

VVczccz

VVczcczEE

BBAB

AAABiliiv

BBABiliivii

�

 (I.44) 

 
satisfies (I.42). 

I.1.3.4 EFFECT OF INTERNAL S RESSES 

Diffusion induced deformation can be due to three effects [27] : i) the sizes and/or ii ) 
the difference of diffusivity of atoms and/or iii ) a reaction between the components. Even 
if there is no reaction during t e diffusing process, in most real cases, the difference of size 
or/and diffusivity exists. Consequently, there is a resultant current of volume, which builds 
up strain and stress field. In this part, we will treat this phenomenon in details. 

a) Cahn’s model 

The first treatment of strain effects on the free energy of a compositionall y modulated 
solid was given by Cahn (1961) [ 20]. He considered a three-dimensional isotropic soli
with no long-range elastic strain fields. Furthermore, there were no dislocations (e.g. no 
sinks and sources of defects and/or vehicle of stress relaxations) in the sample.  Moreover, 
coherency strains will arise during diffusion if the molar volume is a function of 
composition. Taking int account only small composition variations, he obtained for the 
free energy of the system: 
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where η = (1/a)(da/dc), a is the lattice parameter, E and ν the Young’s modulus and the 
Poisson’s ratio, and c0 the average atomic fraction of one of the two components. From this 
expression, following a similar procedure as in I.1.3.3a), it is possible to determine the 
amplification factor: 
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Subsequently, Cahn (1962) [ 21] extended his continuum model to the case of cubic 

crystals in which the elastic deformation is anisotropic. He showed that in this case t he 
amplification factor is: 
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where the modulus Y<UVW> is the function of the wave vector of the composition 
modulation. In an isotropic material, the value of Y<UVW> is equal to E/(1-ν) [see equation 
(I.46)]. 

As was mentioned i I.1.3.3, the continuum model became imprecise when the 
wavelength of the composition modulation and the interatomic distances are comparable. 
Consequently, we have to use a discrete model. Cook and de Fontaine (1969, 1971) [28,29] 
used the microscopic theory of elasticity formulated by Born and Huang (1954) to derive 
the elastic free energy. In contrast to the continuum model, it was found that the excess 
free energy, in the case of a harmonic composition modulation, depends not only on the 
direction, but also on the magnitude of the wave vector of the modulation. Therefore, 
Y<UVW> has to be replaced in the equation (I.47) by a wavelength dependent effective 
modulus M<UVW>. 

On the basis of the above results, Speapen (1996) [30] showed that if stress develops 
during the diffusion itself the process can be characterised by an effective coeff icient. For 
example for an ideal system (κ = 0): 
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where A0 is the initial amplitude of the wave. As the expression shows, effD
~

depends on the 

time [A = A(t)] and it decays gradually with time. It becomes zero when the increase of the 
stress energy can stop the diffusion. At this time, A/A0 reaches its terminal value: 
[1 + f0’’ (1-ν)/2η2E]-1. Therefore, the expression (I.48) shows clearly that this model does 
not contain the relaxation of stress. 

b) Stephenson’s model 

Stephenson presented a general theory of stress and deformation effects during 
interdiffusion which unifies the analysis of the Kirkendall effect by Darken, and the 
treatment of the interaction between stress and deformation proposed by Cahn et 
al.[20,31,32,33,34].  

The idea, which will be presented here, is based rather on the work of Daruka et al. 
(1996) [35] than that of Stephenson (1988) [10]. 

Material transport 

According to the classical treatment of Darken, the continuity equation for componen i 
in the fixed laboratory frame of reference is:  
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Where ρi is the volume density , v

�

 the Kirkendall velocity due to convective transport and 

ij
�

 the flux in the lattice frame. The substantial derivate, Dρi/Dt gives the rate of change of 

ρi seen at the actual (moving) lattice point and can be expressed by partial derivatives as: 
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From equations (I.49) and (I.50), one can easil y obtain: 
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According to Stephenson [10], in the case of isotropic stress field, the diffusion potential 
(generalized chemical potential) is the sum of the chemical potential in an unstressed 
system (µi

SF) and the product pΩi, where p and Ωi are the pressure and the atomic volume, 
respectively: 
 
 

i
SF
ii pΩ+= µµ . (I.52) 

 
Note that the equation (I.52) is applicable only in the case when the number and 

efficiency of sources and sinks are high enough to establish the local equili brium of the 
defects at any time (local equilibr ium hypothesis). Thus the expressions of the fluxes are 
given by: 
 

 ( )pMj i
SF
iiii Ω+∇−= µρ

�

, (I.53) 
 
where Mi is the mobility. Formally, the flux can be also written in the following way:  
 
 2,1,gradgrad =−−= ipLDj iiiii ρρ

�

 (I.54) 
 
where Di is the intrinsic diffusion coeff icient and Li the cross coeff icient. The relation 
between the thermodynamic factor (Θ) and the chemical potential is: 
 

 ( ) SFSF cccRT 21 1 µµ ∇−−=∇=∇Θ , (I.55) 
 
where c = ρ1/ρ (1-c=ρ2/ρ) and ρ = 1/Ω the average density of the solid solution. 
Comparing equations (I.53) and (I.55) and using the Vegard-law: 
 
 12211 =Ω+Ω ρρ , (I.56) 
 
one obtains a relation between the mobili ty and the intrinsic diffusion coefficient  
 

 211 ΩΘ= ρRTMD , (I.57) 
 
where R is the molar gas constant and T the absolute temperature. Moreover, from the 
equations (I.54), (I.53) and (I.57): 
 

 ΘΩΩ=Ω= RTDML 211111 ρ . (I.58) 

Strains and stresses 

The total strain tensor is taken to be the sum of elastic, plastic and stress -free strain 
tensors [10], that is: 
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the stress-free strain is related to the volume transport and we will suppose that this 
deformation is isotropic, i.e. on the length scales of interest there is a dense, isotropic 
distribution of sources and sinks of lattice sites. The rate of the stress-free deformation can 
be given by the expression: 
 

 ( )2211 divdiv
3
1 jj

Dt
DeSF ��

Ω+Ω−= , (I.60) 

 
where eSF=trace(εSF/3) [10]. 

If the stress developed it can relax by creep. The resultant macroscopic deformation 
relaxes the stress level without changing the total volume. Consequently, one can use the 
simple viscous creep model (Newtonian flow; see also equation (24) in [ 10]): 
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where η is the shear viscosity. 

The stress relaxation can also take place by dislocation gliding mechanism, if the stress 
exceeds the critical shear stress level. Using the Tresca-flow model, this effect can be taken 
into account introducing a cu-off stress level; the value of the shear stress cannot exceed 
this level. 

The internal stress can also be related to the elastic deformation. According to Hook’s 
law: 
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where E and ν are the Young modulus and the Poisson ratio. 

It is worth mentioning that there is a relation between v
�

 and the strain rate: 
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where eT=trace(εT/3) and eP=0. Moreover, for isotropic case equation (I.62b) has the 
following form: 
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Thus, from equations (I.51) and (I.65), the continuity equation can be written into the 
form: 

 

 ( ) ( )
Dt

Dp

E
jj

Dt

D νρρρρ 213
divdiv 112212

1 −+−Ω=
��

, (I.66) 

 
where the Vegard-law was used [equation (I.56)]. 

The stress distribution will be governed by the condition of local mechanical 
equili brium [10] 

 
 0div =σ , (I.67) 

 
and by nonlocal boundary conditions and constraints. The final form of the coupled 
equations of system and thus their solutions can be different for different boundary 
conditions. 

For example Stephenson (1993) [36], in the case of an amorphous, isotropic, one-
dimensional syst m, obtained the following equations:  
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Note that, considering that c=ρ1/ρ , equations (I.66) and (I.70) are equivalent and: 
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Equations (I.70) and (I.68) determine the evolution of concentration and pressure in the 

function of time. Since the system of equations is strongly coupled and contains nonlinear 
terms, it is impossible to solve it analyticall y. It can be solved only numericall y. 
Linearizing the equations, the analytical solution is possible [10]. 

I.1.3.5 NONLINEAR EFFECTS 

In the previous paragraphs, linearized equations were used to describe the diffusion 
phenomena. In thi case, the Fourier components of a concentration profile evolve 
independently in time and there can be characterized by the amplification factor R. It 
implies that the parameters M, f0’’ , κ and the parameters characterizing the stress effec η, 
Y<UVW> are independent of the concentration. It is evident that these assumptions are not 
justified in the case of composition modulations with large ampli tudes (there exist during 
spinodal decomposition or at the beginning of the heat treatment of artificial multila ers). 
Thus nonlinear analysis is necessary. Let us consider an initially homogeneous spinodal 
system. The beginning of the reaction can be written satisfactorily by a linear analysis 
putting the average concentration in the parameters. If we keep this aver age value to 
describe the continuation of the phenomena, we will have an exponential growth of the 
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fluctuations. In reality, they slow down in time, principally because the parameter f0’’  is 
not constant, especially when we approach the total decomposition.  

a) Concentration dependent f0’’  

The first possibili ty to solve the problem can be to consider a concentration dependent 
f0’’ .  

One of the earliest treatment of nonlinear diffusion in compositionally modulated 
materials was given by Hill ert (1956, 1961) [ 16,18]. He assumed a system with 
composition modulations in one dimension in which he calculated the free energy from a 
regular solid solution model considering only nearest -neighbour interactions, and no 
restrictive assumptions were made about f0’’ . He ignored, however, the strain effects as 
well as M/c(1-c) and κ were taken to be constant. He demonstrated that the growth slowed 
down as equili brium compositions were approached and that “stationary states” would be 
reached at infinite time. He also showed that the stationary sates are the minimum energ
configurations for a given modulation wavelength. Fluctuations of large wavelength 
exhibited an appreciable amount of “squaring” during growth, and in  the resulting 
stationary states the composition profiles were not harmonic. 

Tsakalakos (1977) [37] derived analytical expressions describing the stationary states, 
which are in excellent agreement with Hill ert’s numerical solutions. 

Cahn (1961) [ 20] considered modulations only of a single wavelength in <100> 
directions in a three-dimensional system. Solving the nonli near diffusion equation, he 
showed that after the initial stages, harmonics of the original wavelength appear and  the 
odd harmonics cause squaring of the modulation. 

The coarsening demonstrated by Hill ert is relevant for one-dimensional compositi
modulations such as are found in artificially modulated structures. Because of the 
assumption of a single initial wavelength, the Cahn’s approach may also be appropriate 
only for these cases. 

 

b) Concentration dependent mobility/diffusion coefficient 

The second possibili ty to solve the problem can be to consider a concentration 
dependent mobility/diffusion coeff icient. 

De Fontaine (1967) [38] studied the evolution of a one-dimensional modulated system

The gradient energy term κ was assumed to be zero and the interdiff usivity D
~

 was a 
quadratic function of composition. Figure I.5 shows the evolution of the first three Fourier 
components of an A -Au-layered structure. The first Fourier component decays almos
exponentially; the effect of the nonlinearity on this component is small. The second and 
third Fourier components, however, are strongly affected by nonlinearity. The most 
striking feature is the emergence of the second component, which is not present at all in the 
original rectangular profile. This reflects the developing asymmetry in the composition 
profile, due to the faster diffusion in the Au-rich than in the Ag-rich region. Tsakalakos 
[37] has given an approximate analytical solution to the nonli near diffusion equation, 
which is in good agreement with de Fontain’s numerical results. 

Later on (1992), Menon and de Fontaine [ 39], from numerical solutions of the 
diffusion equation for a quadratic concentration dependence of the diffusion coeff icient, 
postulated the following conjecture: ‘… the nth amplitude of the Fourier spectrum of the 
solution of the diffusion equation with nonli near diffusivity changes its sign (n-1) times 
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before decaying exponentially with time.’ This behaviour can be seen in Figure I.6. for Ag-
50at%Au system. 

 
De Fontaine [38] and Hilli ard (1970) [ 40] have taken into account the composition 

dependence of both parameters. They used the parameters for the Al -Zn system. They 
described the variation of the free energy with composition by a fourth-degree polynomial
The interdiffusion coefficient was described by a quadratic function of composition. The 
results for asymmetric all oy Al-22.5at%Zn obtained by numerical solution of the nonli near 
diffusion equation are shown in Figure I.7. This shows the development of a regular 
structure followed by coarsening. 

The higher-order terms in the expression of the free energy of a nonhomogeneous 

solution lead to deviations in the wavelngth -dependence of the interdiffusiv ty ΛD
~

, as given 
by equations (I.32), (I.45) and (I.47) [41]. 
 

 
Figure I.5 First three Fourier components of an Ag-Au-layered structure. [38] 
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Figure I.6 (a) Logarithm of the normalized intensities vs. time (the first four order) for the Ag-50at%Au 

system. (b) The first six harmonics vs. time. [ I0 and A0 are the initial first order intensity and 
amplitude] [39] 

 

 
Figure I.7 Evolution of the composition profile vs. time in an Al -22.5%Zn alloy at 100°C. (a) 10, (b) 

13.3, (c) 60, (d) 400 and (e) 416 min. The horizontal dashed-lines denote the equilibriu
composition. [38,40] 
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I .2 SURFACE SEGREGATION 

I .2.1 Thermodynamical aspects 

In a binary alloy, the concentration close to the surface can be different from its bulk 
value. This phenomenon is called surface segregation. Although it was treated already at 
the end of the nineteenth century by J.W. Gibbs [ 42], a sophisticated statistica
thermodinamical treatment can be very diff icult, and many experimental and theoretica
aspects of the problem are still actively studied in the li terature [43]. 

Theoretically, the segregation must affect the properties of several atomic planes. 
Nevertheless, the most used odel, since it is the simplest, is the monolayer one [ 44]. The 
surface is defined as a two-dimensional homogeneous phase of the same structure as the 
volume. The equili brium of surface segregation in an AB binary system corresponds to the 
following relation: 

 
Av + Bs ⇔ As + Bv, 

 
where the superscripts s and v correspond to the surface and volume, respectively.  

Determining the chemical potentials of A (µA) and B (µB) atoms both in the surface 
layer and in the volume, and using that chemical potentials are eq ual in the surface layer 
and in the volume ( vvss

BABA µµµµ −=− ), one obtains the well -known relation:  
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ci (i = s, v) are the surface and volume atomic fractions of A and B atoms and ∆H is the 
segregation energ . Formally, the expression o ∆H can be divided into three parts: 
 

 sizechemtens HHHH ∆+∆+∆=∆ . (I.73) 
 
The first term represents the effect of surface tension ( ∆Htens) [ 42], which tends to 
segregate the element having the smaller surface tension, the second one corresponds to the 
chemical effect (∆Hchem) [42], which takes into consideration the nature and the number of 
interactions between atoms at the surface and the last one (∆Hsize) takes into account the 
elastic energy of relaxation [45, 46]. 

Sometimes, the size eff ect is negligible as compared to the two other terms. However, 
if the sign of these two terms are differen t, they can compensate each other and the size 
effect can be dominant. 

Of course, the concept mentioned above cannot be applied in all cases. For example, if 
the segregation expends more than one surface layer, a multilayer model can be used (with 
different approaches for the energy terms in (I.73), see e.g. estimates based on pair 
interactions [47,48,49] or, in transition and noble metal alloys, on the electronic structure: 
Tight Binding Ising Model [50]). 
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I .2.2 K inetic aspects 

In practice, the determination of segregation data is diff icult since the equili brium 
distribution of composition has to be reached. 

Application of the “local equili brium” hypothesis [51,52] permits, however, to obtain 
these data from kinetic studies. During the segreg ation process, two phenomena have to be 
taken into account: exchange of atoms close to the surface and the volume diff usion. 

Most of the models describing the kinetics of surface segregation ( e.g. [53,54]) are 
based on the simplified concept that only the surface (terminal, first) layer is distinct fro
the volume (monolayer model). A multilayer approach is far more appropriate than the 
monolayer one. The starting point can be the Ising model with nearest neighbour 
interactions and the Bragg-Willi ams approximation [55], and e.g. Cserháti et al.  applied 
Martin’s model [see I.1.3.3b)] to calculate the kinetics of surface segregation in ordered 
alloys [26]. 

I.2.2.1 APPLICATION OF THE MARTIN MODE  

Since Martin have not written explicitly the expression of the chemical potentials and 
diffusion activation barriers for the terminal layers, Cserháti et al. [26] gave it (i = 1): 
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where P = (VAA-VBB)/2 + V (for the N-th plane, a similar relation can be created) and 
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For the plane i = N, similar expressions can be written. As input parameters in [26] pai
interaction energies were used, but of course, in the literature, there are other models for 
more appropriate description of the energetics taking into accoun e.g. structural relaxation, 
size eff ect, electronic structure, etc. (embedded-atom [56], Kinetic Tight Binding Ising 
Model 57]). 

I .3 GRAIN-BOUNDARY DIFFUSION 

Up to this point, we treated only monocrystalli ne or amorphous materials. In these 
systems, the material transport occurs by volume diffusion only. Whereas,  in 
polycrystalli ne materials, grain boundaries are, generally, diffusion short circuits, 
consequently, the major part of material transports occurs by grain-boundary diffusion. 
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I .3.1 Fisher’ s model 
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Figure I.8 Illustration of Fisher’s model 

 
As it can be seen in Figure I.8, grain boundaries, with thickness δ are perpendicular t

the surface where the diffusion source is deposited, are considered as an isotropic medium, 
semi-infinite, uniform characterized by a higher diffusivity as compared to the bulk 
[58,59]. With these assumptions, and considering the case, when there is also diffusion into 
the grains (type B-regime), the Fisher model is based on the following statements: 

 
1. Volume and grain-boundary diffusion coeff icients (Dv and Db) are isotropic, 

concentration, position and time independent. 
2. The concentration and the flux are continuous at the boundary/volum

interface. 
3. The grai -boundary thickness is so small that the concentration variation in the 

boundary is negligible in the y direction.  
 

Then 
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(I.76) 

 

where cv and cb are the concentrations of the diffusing species in the bulk and in the 
boundary, respectively, and t the time. 

 
One can find several solutions of equations (I.76) in the literature. For example 

Suzuoka [60,61] gave the solution for the case of a thin -film source. Whipple’s solution 
[62] applies when the surface concentration is maintained constant on the surface of the 
sample. Le Claire formulated a simple relationship between δDb, Dv, t and the slope of the 
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experimental penetration curve ( 5/6ln xc ∂∂ , where c  is the value of the concentration in 
the yz plane) [ 58,7]. These expression are used, in general, for the interpretation of 
experimental penetration curves. Plotting the logarithm of the concentration versus x6/5, at 

penetrations larger than tDv5 , a straight line is obtained, the slope of which can be used 

for evaluation of δDb. 
However, the solutions of equations (I.76) concern only diffusion in bicrystals. Levine 

and MacCallum treated the case of grain-boundary self-diffusion for polycrystals in the 
most general way [63]. They considered that the crystal contains randomly oriented grai
boundaries and that the grain size distribution is also random. Supposing that concentrati
gradients are uniquely oriented along the grain boundaries, it is possible to show that Le 
Claire’s equations can be used, provided that the mean inclination of boundaries is taken 
into account. There ore, these equations give the basis of the mathematical analysis of 
grain-boundary diffusion in polycrystals. 

I .3.2 Diffusion regimes in polycrystals 

Bulk materials are, generally, polycrystalli ne. In polycrystals, three diffusion regimes 
are distinguished by Harrison [64] : type A, B and C regimes(Figure I.9). 
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Figure I.9 Schematic illustration of Harrison’s diffusion regimes 
 

Regime A : If the diffusion annealing time is sufficiently long and/or the grain-boundary 

size d is small ( dtDv >> ), the diffusion fields related to the diffusion into the grains are 
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not isolated from each other. Macroscopicall y, the crystal behaves like a homogeneous 
medium, characterised by one effective diffusion coefficient Deff. This effective diffusion 
coefficient can be related to volume and grain-boundary diffusivities by the fracti f of 
the atomic sites in grain boundaries: Deff=fDb+(1-f)Dv. 
 
Regime B : In this case the different grains are isolated from each other with a non 
negligible contribution of volume diffusion from the surface and from the boundaries. This 
regime was already treated in I.3.1. 
 
Regime C : If 1<<kbδ/2(Dvt)

1/2, the diffusi  process takes place only in grain boundaries, 
since the direct volume diffusion contribution and lateral leakage from grain boundaries 
are negligible. Therefore, the process is characterized by one diffusion coefficient (Db) in a 
homogeneous medium. The a dvantage of this regime is that the grai -boundary diffusion 
coefficient can directly be measured without any supposition on the grain-boundary width. 
However, it is generally extremely difficult to attain the necessary experimental conditions 
using the tracer technique [65]. 

I .3.3 Hwang-Balluffi model 

Hwang et al.  [66] analysed the problem of diffusion in an array of uniformly 
spaced parallel grain boundaries in a thin-film system under the conditions of C kinetics. In 
this regime, volume diffusion is essentially frozen out so that the material transport takes 
place only within the grain boundaries without any leakage into the adjoining grains. The 
geometry and the notations of the thin-film system analyzed are illustrated in Figure I.10. 

Hwang and Balluffi developed a mathematical analysis for interpretation of the 
accumulation kinetics measurements. They assumed that the atoms arriving from the grain 
boundaries spread out on the surface. 

They determined a relation, which links the grain-boundary diffusion coefficient Db 
with the average concentration cs of the accumulation surface. This Hwang -Balluffi 
relation is given by:  

 
 ( ) ( )'exp1// 0 tcckk s ω−−=′′′ , (I.77) 

 khD sb ′= δλδω / . (I.78) 
 
Here λ is the grai -boundary density (e.g. for a polycrystal having cubic grains with d, 
λ = 2/d). Moreover, k’  is the segregation coefficient at the accumulation surface/grain -
boundary interface and k’’  the segregation coefficient at the grai -boundary/source 
interface. They are defined by the proportions cs/cb and cb/c0, respectively. We note that the 
form given here is not exactly that written in [ 66], but its a little bit generalised version 
[58,67]. The t’  quantity is a “corrected time” of the form: 
 

 0ttt −=′ , (I.79) 
 
where t0 is a constant, taking into account that a transient phenomenon occurs in eac
diffusion measurement before a quasi-stead -state is reached and t is the real time. The 
Hwang-Balluffi equation can be applied under the following conditions: i) a quasi-stead -
state grai -boundary diffusion current to the accumulation surface has been established; ii) 
the surface diffusion rate is sufficiently rapid so that the segregated atoms are uniformly 
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distributed laterally in the surface region; iii ) a constant concentration of diffusing source 
atoms is maintained in the grain-boundary/source interface. 
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Figure I.10 Geometry of the thin film system used in the Hwang-Balluffi method 



Chapter I 

 42 

REFERENCES 
                                                
1  Y. Adda et J. Phili bert, La diffusion dans les solides, Presses Universitaires de France, 

Paris (1966) 
2  C.J.A. Monty, Théorie atomique statistique de la diffusion, Difusão em Materiais, 

Editodo por J. Phili bert, A.C.S. Sabioni, F. Dyment, Ouro Preto: Editora REM-Revista 
Escola de Minas, 51 (1996) 

3  J. Phili bert, Atom Movements – Diffusion and Mass Transport in Solids, Les Editions 
de Physique (1991) 

4  A. Einstein, Ann. Physik., 17, 549 (1905) 
5  M.V. Smoluchwski, Z. Physik. Chemie, 92, 129 (1917) 
6  Diffusion in Semicoductors and Nano-Metalli c Solids, Beke, D.L. (ed.), Landolt-

Börnstein, New Series, Vol. 33-B1, Berlin: Springer-Verlag, 1999 
7  A.D. Le Claire, Brit. J. Appl Phys., 44, 351 (1963) 
8  A.R. Allnatt and A.B. Lidiard, Atomic Transport in Solid (University Press, 

Cambridge), 170 (1993) 
9  C.P. Flynn, Point Defects and Diffusion, Oxford, Clarendon Press, (1972) 
10  G.B. Stephenson, Acta Metall., 36, 2663 (1988) 
11  D.L. Beke, Defect and Diffusion Forum, 129-130, 9 (1996) 
12  E.O. Kirkendall, Trans. A.I.M.E., 147, 104 (1942) 
13  A.D. Smigelskas and E.O. Kirkendall, Trans. A.I.M.E., 171, 130 (1947) 
14  D.L. Beke, Key Eng. Mater., 103, 51 (1995) 
15  B.S. Bokstein, Z.S. Zsukhovicki Thermodynamics and kinetics of diffusion in solids, 

Moscow: Metallurgya, 1974 
16  M. Hill ert, Sc. D. Thesis, Massachusettes Institute of Technology, Cambridge, 

Massachusettes (1956) 
17  R. Becker, Ann. Physik, 32, 128 (1938) 
18  M. Hill ert, Acta Metall., 5, 29 (1961) 
19  J.W. Cahn and J.E. Hilli ard, J. Chem. Phys., 28, 258 (1958) 
20  J.W. Cahn, Acta Metall., 9, 795 (1961) 
21  J.W. Cahn, Trans. Metall. Soc. AIME, 242, 166 (1968) 
22  H.E. Cook and D. de Fontaine, Acta Metall., 17, 915 (1969) 
23  H.E. Cook, D. de Fontaine and J.E. Hilli ard, Acta Metall., 17, 765 (1969) 
24  G. Martin, Phys. Rev. B, 41, 2279 (1990) 
25  A.L. Greer and F. Spaepen, Synthetic Modulated Structure Materials (L. Chang and 

B.C Giessen, eds.), New York: Academic Press (1985) 
26  Cs. Cserháti, H. Bakker, D.L. Beke, Surf. Sci., 290, 345 (1993) 
27  D.L. Beke, I.A. Szabó, Deff. and Diff. Forum, 95-98, 537 (1993) 
28  H.E. Cook and D. de Fontaine, Acta Metall., 17, 915 (1969) 
29  H.E. Cook and D. de Fontaine, Acta Metall., 19, 607 (1971) 
30  F. Speapen, J of Magn. Magn. Mat., 156, 407 (1996) 
31  F.C. Larché and J.W. Cahn, Acta Metall., 30, 1835 (1982) 
32  F.C. Larché and J.W. Cahn, Acta Metall., 33, 331 (1985) 
33  F.C. Larché and J.W. Cahn, Acta Metall., 21, 1051 (1973) 
34  F.C. Larché and J.W. Cahn, Acta Metall., 26, 53 (1978) 
35  I. Daruka, I.A. Szabó, D.L. Beke, Cs. Cserháti, and A. Kodentsov, F.J.J. van Loo, Acta 

mater., 44, 4981 (1996) 
36  G.B. Stephenson, Defect and Diffusion Forum, 95-98, 507 (1993) 
37  T. Tsakalakos, Ph.D. Thesis, Northwestern University, Evanston, Illinois (1977)  
38  D. de Fintaine, Ph.D. Thesis, Northwestern University, Evanston, Illinois (1967)  



Theoretical Aspects 

 43 

                                                                                                                                              
39  E.S.K. Menon and D. de Fontaine, Scripta Metall., 27, 395 (1992) 
40  J.E. Hilli ard, Phase Transform. Pap. Semin. Am. Soc. Met., ASM, Metals Park, Ohio, 

497 (1970) 
41  T. Tsakalakos, Thin Sol. Films, 86, 79 (1981) 
42  J.W. Gibbs, The Collected Works of J.W. Gibbs, Yale University Press, New Haven, 

Vol. 1 (1948) 
43  P.A. Dowben, A. Mill er, Surface Segregation Phenomena, CRC press, 1990 
44  E.A. Guggenheim, Trans. Faraday Soc., 36, 397 (1940) 
45  P. Wynblatt and R.C. Ku, Surf. Sci., 65, 511 (1977) 
46  J. Freidel, Advan. Phys., 3, 446 (1954) 
47  F.L. Willi ams and D. Nason, Surf. Sci., 45, 377 (1974) 
48  M.J. Kelley and V. Ponec, Prog. Surf. Sci., 11, 139 (1981) 
49  M.J. Sparnaay, Surf. Sci Rept., 4, 101 (1984) 
50  G. Tréglia, B. Legrand et F. Ducastelle, Europhys. Lett., 7, 575 (1988) 
51  M. Lagües, Phil ips Res. Repts. Suppl., 5 (1976) 
52  M. Lagües and J.L. Domange, Surf. Sci., 47, 77 (1975) 
53  P.A. Dowben and A. Mill er, Surface Segregation Phenomena, CRC Press, Boca Raton 

(1990) 
54  J. Du Plessis, Surface Segregation, Diffusion and Defect Data, Solid State 

Phenomenon, Sci. Tech., 11 (1990) 
55  T. Muto and Y. Takagi, Theory fo Order-Disorder Transition in Alloy, Solid State 

Phys., 1, 31, (1955) 
56  M. Lundberg, Phys. Rev. B, 36, 4692 (1987) 
57  A. Senhaji, G. Tréglia, B. Legrand, N.T Barrett, C. Guill ot et B. Vill ette, Surf. Sci. , 

274, 297 (1992) 
58  I. Kaur, Yu Mishin and Gust, Fundamentals of Grain and Interphase Boundary 

Diffusion, Third enlarged edition, John Wiley & Sons Ltd (1995)  
59  J.C. Fisher, J. Appl. Phys., 22, 74 (1951) 
60  T. Suzuoka, Trans. Japan Inst. Metals, 2, 25 (1961) 
61  T. Suzuoka, J. Phys. Soc. Japan, 19, 839 (1964) 
62  R.T. Whipple, Phil. Mag., 45, 1225 (1954) 
63  H.S. Levine and C.J. MacCallum, J. Appl. Phys., 31, 595 (1960) 
64  L.G. Harrison, Trans. Faraday Soc., 57, 1191 (1961) 
65  ��� �������
	���������������
��������� �������� !�#"$� Transactions of the Jap. Inst. of Metals, 27, 649 

(1986) 
66  J.C.M. Hwang, J.D. Pan, R.W. Balluffi, J. Appl. Phys., 50, 1339 (1979) 
67  J.C.M. Hwang, J.D. Pan, R.W. Balluffi, J. Appl. Phys., 50, 1335 (1979) 



 

 



 

 

 

Chapter II 

Systems and Techniques 

 In this chapter we present the systems 
studied experimentally, the techniques 
applied and the methods used for 
fabrication of multilayers and thin films. 
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Chapter II  

SYSTEMS AND TECHNIQUES 

II.1 SYSTEMS 

In this chapter, we present the systems studied experimentally, the techniques applied 
and the methods used for fabrication of m ultilayers and thin films. 

II.1.1 Si-Ge system 

The Ge-Si phase diagram is shown i Figure II .1 [1]. There is a complete mutua
solubili ty in this system. The mutual diffusion coefficients (Si in Ge and vice versa) are 
strongly influenced by the chemical composition of the alloy. Moreover, it is possible to 
prepare samples in amorphous state. 

 

 
Figure II.1 Ge-Si phase diagram [1] 
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II.1.2 Cu-Ni system 

The Cu-Ni phase di gram is shown in Figure II.2 [1]. There is a complete mutua
solubili ty in this system. Both elements form a BCC structure. The mutual diff usion 
coefficients (Cu in Ni ans vice versa) are strongly influenced by the chemical composition 
of the all oy, especially at low temperatures. According to certain authors [1,2], there exist, 
however, a miscibility gap at lower temperatures than we worked. 

 
Figure II.2 Cu-Ni phase diagram [1] 

II.1.3 Ag-Cu system 

The Ag-Cu phase diagram is shown i Figure II .3 [1]. There is a miscibili ty gap in this 
system. Both elements form a FCC structure. 
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Figure II.3 Ag-Cu phase diagram [1] 

II.2 SAMPLE PREPARATION AND HEAT TREATMENTS 

Our samples were prepared by magnetron sputtering (Si -Ge and Cu-Ag) except for the 
Cu-Ni which were evaporated in-situ under ultra high vacuum. 

Sputter deposition is a rapid, fairly inexpensive process, which produces dens films, 
often with near-bulk qualities. In the sputtering process a plasma discharge is maintained 
above the targets, which are sputtered onto SiO 2 substrate by Ar+ ion bombardment 
(P = 7×10-3mbar). Our S -Ge multilayers (5-120 nm) and Cu (21 nm)-Ag (12 nm) thin film 
samples were prepared from elemental targets. Thicknesses are measured by a  quartz 
crystal monitor. Figure II .4 shows the sputtering system designed and built in our 
laboratory (Department of Solid States Physics, University of Debrecen) [ 3]. This syste
can be used for deposition of various metals, semi conductors, multilayered structures and 
alloys. The deposition chamber (of 400 mm diameter and 300 mm height) is connected to 
an ultra-high vacuum system pumped by a diffusion pump. Pressure of 1-5×10-7 mbar is 
routinely obtained with liquid nitrogen trap.  The sputtering chamber contains two 
magnetrons with shutters, instrumentation feedthroughs, viewing port, quartz crystal 
monitor, associated electric leads, gas management, ferrofluidics rotary feedthroughs and 
vacuum gauges. The magnetrons are two identical commercially available 5 cm diameter 
planar sources. They are positioned in the bottom plate of the stainless-steel vacuu
chamber. The pneumatically driven substrate holder equipped with an option of heating the 
substrates during the motion is placed on the top plate of the sputtering chamber. To 
produce multilayers the substrates are translated between the beams from the sources and 
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the motion of substrate holder and the shutters of magnetrons is synchronised and 
controlled by computer. This system ma kes it possible to control the deposition time for 
each layer with 0.1 s. In order to decrease the interfacial intermixing between the layers, a 
delay of 1 s between the closing of one shutter and the opening of the other one is 
employed. 

 

 
Figure II.4 Scheme of the magnetron sputtering equipment. 

The characteristics of S -Ge multilayers prepared for RBS and Auger analysis are a 
little bit different. In the first case the modulation lengths are between 10 and 40 nm and 
the total thickness is changed between 55 et 220 nm. For the second technique the 
modulation length are between 10 et 20 nm and the total thickness is changed between 60 
and 120 nm. In both cases the thickness of the Si and Ge layers is practically equivalent. 

The structure of the multilayers (amorphous for Si -Ge) and the thin films was 
controlled by transmission electron microscopy (Jeol 2000 FX -II). In the case of the Cu-Ag 
system the grain size of the Cu film, determined before and after hea treatment, was abou
20 nm. 

The Si-Ge multilayers were heat treated in high purity argon atmosphere (99.999%) a
683 K (RBS experiment) and 680 K (Auger experiment), i.e. bellow the re-crystalli sation 
temperatures of Ge (700 K) and Si (900 K) [4]. The temperature was measured by a NiCr-
Ni thermocouple. 

Nickel dissolution into monocrystalline Cu(111) as well as silver grai -boundary 
diffusion in nanostructured Cu were studied i -situ in high vacuum in the traditional Auger 
equipment. 

A Cu(111) single crysta was cleaned in-situ prior to any nickel deposition by repeated 
cycles of argon ion bombardment and thermal annealing at 400°C until no impurity could 
be detected. The Ni/Cu (111) sample was prepared i -situ by vapour deposition of Ni onto 
the Cu(111) substrate by heating a nickel wire. LEED observations were performed t
confirm that epitaxial Ni layers deposited onto Cu(111) and the calibration of the as -
deposited nickel quantities (3, 6, 14 eq-ML) was carried out in the same way as described 
in [5]. 
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II.3 ANALYTICAL TECHNIQUES 

II.3.1 Small Angle X-Ray Diffraction 

II.3.1.  GENERAL DESCRIPTION OF THE METHOD 

X-ray diffractometry is a powerful, widely used technique for characterisation o
multilayers. It is non-destructive and provides structural information on atomic scale. The 
X-ray diffraction patterns are commonly divided into small angle ( ≤15°) and high angle 
(≥15°) regions. At small angle the length scale is greater than the lattice spacing of the 
constituent layers, so the scattering of X -ray can be considered as arising fr om the 
chemical modulation of the structure and is practically independent of the particular atomic 
structure (and that is why amorphous multilayers can also be characterised with the help o
this technique). A good quali ty of multilayer with a modulation length of Λ can provide 
many orders of intense and sharp Bragg-reflections at positions described by the modified 
Bragg-formula [6]: 
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, (II .1) 

 
where Θ is the angle of the peak position, n is the order of reflection, λ is the radiation 
wavelength, and 1-δ is the real part of the average index of reflection of the superlattice. 
By fitting a straight line to the sin2Θ versus n2 function the Λ and the index of reflection of 
the superlattice can be determined. The intensity of the small angle Bragg-peaks is strongly 
influenced by the sharpness of the interface. This behaviour can be used to contro
interdiffusion in multilayers.  

II.3.2 Auger Electron Spectroscopy 

In the following paragraph the Auger effect is summarised briefly (a detailed 
description of the technique is given in reference [7]) and the used apparatus is described. 

II.3.2.  GENERAL DESCRIPTION OF THE METHOD 

The sample is irradiated by a focused monoenergetic electron beam (1-10 keV) (Figure 
II .5). These electrons undertake several types of perturbations. In elastic colli sions the 
incident electrons undertake an angular deflection but conserve their initial energy
Individual inelastic collisions cause the ionisation of at oms. The incident electron looses an 
energy of ∆E, which is higher than that of the electron leve E1 with which it interacted. 
The amount of energy (∆E- E1) is communicated with a reemitted secondary electron. In 
collective inelastic colli sions an incident electron transmits a part of the energy to the 
electron gas of metals. The Auger effect is the result of the following process: after 
ionisation the hole of the internal level (E1) is fill ed in by an electron of a more externa
level (E2). Two relaxation modes are possible: i) emission of an X photon  with an energy 
hν=E1-E2 or ii) a transfer of this energy to an electron of a more external level (E3), which 
is reemitted. Therefore, the kinetic energy of an Auger electron is characteristic of three 
electron levels of the element: E=E1-E2-E3 and it makes possible to identify the emitting 
atom [8]. The Auger spectroscopy is a surface analysis technique, since most of the Auger 
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transitions are in between 40 and 1000 eV: the mean free path of theses electrons varies 
from 2 to 10 monoatomic layers [ 9]. 
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Figure II.5 Schematic illustration of the emission of Auger electron 

II.3.2.  AUGER DEPTH PROFILING 

This equipment was used to determine experimentally the innterdiffusion profil es in he 
Si-Ge multilayers. The profiles were measured in the following conditions [10]: ion energ
0.8 keV; angle of incidence (with respect to the surface normal) 80°; the specimen was 
rotated during ion sputtering. The sputtering rate of silicon and germanium using these 
sputtering conditions are the same [11] and thus the sputtering time can be readily 
transformed to sputter depth. For Auger analysis the following Auger peaks have been 
recorded: Ge 52 eV and Si 92 eV. The small Ge peak of 89 eV overlaps with the measured 
Si peak thus the later was corrected b assuming that the alloying (mixing) of Ge and S
does not influence the peak shapes. The concentration was calculated by comparing the 
corrected Si peak with that measured on pure sili con substrate; correction for 
backscattering was made [ 11]. Because of the ion sputtering induced alterations, the 
measured depth profile is a distored version of the original concentration distribution. A 
recently developed method was used to calculate the original concentration distribution 
from the measured depth profile [11,12]. In this method, it is supposed that the majority of 
the ion-induced alteration is due to ballistic mixing (which assumption is satisfied for this 
case, since the other important distorting process the surface roughening results in less than 
1 nm rms roughness using the earlier sputtering parameters [13]), which is properly 
described by TRIM simulation [12,14]. The method takes also into account the intrinsic 
interface roughness or waviness. 

II.3.2.  TRADITIONA AUGER APPARATUS 

This apparatus was used for studying Ni dissolution into monocrystalli ne (111) cupper 
and silver grai -boundary diffusion in nanostructured cupper films. The equipment 
contains a conventional UHV chamber (P<1.10-9 torr) equipped with a three-gird LEED 
optics, an ion gun and a cylindrical mirror analyser (CMA). The gun operated with an 
electron beam of 2 keV and 60µA. A 4eV modulation tension was used to obtain the 
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derivative spectrum dN(E)/dE. The sample was fixed on a heater (carbon furnace 
encapsulated in a boron nitride ceramic), which presents 5 degrees of freedom (X, Y, Z and 
two rotational movements). This heater is monitored by an Eurotherm regulator (902P) and 
the temperature controlled by a Pt-PtRh thermocouple fixed on the surface of the sample. 
In the present work the surface concentrations of silver and copper were monitored by 
following the behavior of the 356 eV silver Auger peak and the 60 and 920 eV copper 
peaks as a function of annealing time. The peak heights were obtained by the usual 
procedure of measuring the difference of intensity from the most negative point (fro
where the kinetic energy is m easured) to the most positive point on each peak of the 
derivative spectrum. 

Before heat treatment, a survey spectrum of the samples was recorded to check the 
cleanness of surface. Since oxygen and carbon contamination were observed 
systematically, a rather low Ar+ sputtering (ions being accelerated to 2 keV with curren
densities of 70 µAcm-2) of the surface was applied. 

In the case of the study of Ni dissolution into cupper, during anneali ng of the sample, 
Auger peak -to-peak heights variations of Cu(920eV) and Ni(848eV) versus time were 
recorded. The dissolution kinetics were measured a t different temperatures: 635-721 K. 
There is an overlapping between the Ni(848eV) and Cu(849eV) Auger transitions, and thus 
a similar method was used than for the Si -Ge system. 

In the case of Cu-Ag system the surface concentrations of silver and copper we re 
monitored by following the behaviour of the 356 eV silver Auger peak and the 60 and 920 
eV copper peaks as a function of annealing time. The study of silver grain -boundary 
diffusion was made at 393-428 K. 
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Chapter III  

Nonlinear Diffusion 

In this chapter the effect of concentration 
dependent diffusion coefficient on 
interdiffusion in multilayers and on 
dissolution of an ultra-thin film into a bulk 
substrate will be investigated 
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Chapter III  

NONLINEAR DIFFUSION 

III.  VALIDITY OF THE CONTINUUM APPROXIMATION IN MULTILAYERS 

As we have seen, the continuum model becomes imprecise on atomic scales. For 
example Cook et al. [1,2] showed that the continuum and discrete approximations give the 
same results only if the wavelength of the modulati Λ is at least s x times longer than the 
interatomic distance, d, in the direction of the diffusion ( Λ > 6d) [see paragraph I.1.3.2]. 
Furthermore, in references [3,4] it was shown that in crystalli ne materials the continuum 
description breaks down for concentration fluctuations with Λ < 10d, where Λ is the 
wavelength of a sinusoidal concentration profil e. Cahn [5] and Yamauchi and Hilli ard [6] 
found the similar range of validity of the continuum approach for intermixing o
multilayers. These conclusions, however, are obtained in linear approximation, i.e. 
assuming that the diffusion coefficient is independent of concentration. The treatment of 
the effects of this type of nonlinearity is very compli cated even if one neglects the stress 
effects [see paragraph I.1.3.5]. As is written in paragraph I.1.3.5, Tsakalakos [7,8] and 
Menon and de Fontaine [9] tried to treat this problem analytically, or by solving the 
continuum equations numerically considering a concentration dependence no stronger 
than a quadratic one in the diffusion coeff icient, although even in ideal solutions it can be 
stronger and is better described by an exponential dependence [10]. 

In this chapter [11,12,13], the problem of the stronger concentration dependence of the 
diffusion coefficient is investigated in the frame of the continuum and discrete models [see 
I.1.3.4b) and I.1.3.3b)]. 

III.1.1 Theory 

For the sake of simplicity, we will restrict ourselves to the case of an ideal binary solid 
solution (i.e. no gradient energy effects), although both of the models (continuum and 
discrete) can take into account the gradient energy effect [see Appendix at the end of this 
chapter]. Moreover, as the discrete model does not contain the Kirekendall and stress 
effects, the input parameters have to be chosen in such a way that these effects not to be 
intervened and thus the two models can be compared under the same conditions. 

III.1.1.  CONTINUUM MODE  

First of all, it is necessary to include the composition dependence of the diffusion 
coefficient in the continuum model. Constructing the expression of atomic flux [see I.1.3.1 
and I.1.3.4b)], no restriction has been made related to the composition dependence of the 
diffusion coefficient, therefore, we can assume that it is exponential: 

 
 )0(lnln DmcD += . (III .1) 

 
Here c is the atomic fraction of one of the two components, D(0) the diffusion coeff icient 
for c = 0. Note that coefficient m can be large, because in the pure constituents the values 
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of D can be considerably different [10].1 Furthermore, the form of the activa ion energies 
in the Martin model [see I.1.3.3b)] also suggest that equation (III .1) gives a good 
description. 

Since the discrete model is not able to describe the Kirkendall shift and the pressure 
effects, we have to assume that both of the intrinsic diffusivities and the atomic volumes 
are equal to each other: 

 
 DDD == 21   and  

Ω=Ω=Ω 21 . 
(III .2) 

 
Therefore, there is no net transport of volume, i.e. the absolute values of the atomic fluxes 
of the two components are equal to each other. Note that under these conditions, the atomic 
flux is given by [see equation (III .39)]: 
 

 ( ) Ω−= ccDj i grad . (III .3) 
 

The input parameters in the calculations are close to the Mo -V system. This is a nearly 
ideal system, and we assumed tha V = 0. Thus, since the thermodynamic factor is unity 
[Θ = 1, see equation (III .47)], the intrinsic diffusion coeff icients are identical to the tracer 
diffusion coefficients [see equation (I.19) (f = 1)]. There are no tracer diffusion data in the 
literature for either Mo or V diffusion as a function of the concentration in the Mo-V 
system. Thus, fixing the two ends of equation (III .1), diffusion data for the V diffusion in 
pure Mo and V were used [10]: DV (cV = 0) = 9.8 × 10-28 m2/s and DV (cV = 1) = 1.8 × 10-20 
m2/s at T = 1053 K. These values determine the experimental value of m in equation 
(III .1): mexp = 16.7, but as we will see latter, m can be used as a parameter as well. Note 
that the ratio of the impurity diffusion of V in Mo and Mo self diffusion coeff icient at the 
temperature for which our calculation was carried out is DV (cV = 0)/ DMo(cV = 0) = 2 [10]. 
Furthermore, the atomic volume of V was taken as Ω (8.36 × 10-6 m3/mol) in the 
calculations. 

A finite difference method was used to calculate the evolution of the concentration 
distribution. We started from an initially square composition profil e and the only spatial 
coordinate axis (one-dimension) was parallel to the direction of diffusion. Since the 
composition profil e is periodical (multilayer) and symmetrical to the middle of the one of 
the monolayers during the process, it is enough to consider a half -bilayer during the 
numerical calculations. A calculation cycle can be div ided onto two subsequent steps: first 
the atomic fluxes of each element are calculated from the equation (III .3), then the new 
concentration distribution is obtained from the diff erence form of (I.70), and using it, the 
new value of the diffusion coeff icient is calculated from equati (III .1). In the above 
calculations, the values of the compositions and diffusion coefficient are defined at the 
midpoint of each slab, and accordin gly, grad  c is calculated between two neighbouring 
slabs, while in the expression of the atomic flux [equation (III .3)], D is calculated as the 
arithmetic mean of the two values. 

                                                
1 In this way, the system of equations (I.68), (I.69), (I.70) and (III .39) can be used to calculate the time 
evolution of the concentration distribution taking into account all the effects mentioned (Kirkendall, stress, 
gradient energy, concentration dependence of the dif fusion coefficient). 
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III.1.1.  DISCRETE MODE  

A numerical method was used to solve the set of coupled difference equations (I.41) to 
obtain the time dependence of compositions in different layers. Since the compositi
profile is periodical and symmetrical like in the continuum case, we can use a similar half -
bilayer system (consisting of N atomic planes). The boundary conditions were established 
in the following way: at each calculation cycle, the concentration in the atomic layers on 
both sides of the symmetry plane were taken to be equal (e.g. cN = cN+1) to each other. We 
note that the modulation length Λ is determined implicitly by the lattice spacing d in the 
direction of diffusion and N (Λ = 2Nd). 

Since, as was mentioned, we want to compare the continuum and discrete models, we 
have to choose a consistent set of input parameters. It is easy to show that if V = 0, 
Ei,i+1 = Ei+1,i and Γi,i+1 = Γi+1,I  = Γ. Thus, for a bcc or fcc structure [see equation (I.15)]: 

 
 2dD=Γ . (III .4) 

 
Furthermore, taking a bcc lattice with a (100) direction of diffusion, i.e. zv = 4, zl = 0, we 
have [see equations (I.43) and (I.44)]: 
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where Q = E0 + 4(VAA + 3VBB). According to equation (III .1), for c = 1: 
 

 ( ) ( )[ ]0/1ln DDm=  (III .6) 
 
and thus 
 

 ( ) ( )mcTkQDD B exp/exp 00 −= . (III .7) 
 
Here D0 and Q0 are independent of concentration and, for example, Q0 corresponds to the 
activation energy of V self-diffusion. Comparing equations (III .4), (III .5), (III .6) and 
(III .7): 

 
 0
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0 , QQdD ==ν  (III .8) 

 
and  
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Thus all the input parameters for the discrete model are fixed. It is worth mentioning, that 
equation (III .9) corresponds to the result which can be obtained for the linear concentration 
dependence of activation energy from a continuum, mean field approximation in an idea
solid solution, i.e. equation (III .9) establishes the condition that the concentrati
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dependence of the activation energy should be identical in the two models if the 
concentration distribution is homogeneous ( ci-1 = ci = ci+1 = ci+2 = c). 

A calculation cycle can be divided into two subsequent steps: first the activation barrier 
and the jump frequency are calculated from equations (I.43) and (I.44), then the new 
configuration of the composition from equati (I.41). 

III.1.1.  CALCULATION OF INTENSITIES OF SMALL ANGLE X-RAY DIFFRACTION 

In both cases, ln(In/I0) vs. t curves for the different orders of the small angle X -ray 
diffractions (SAXRD) were always calculated from the c(x,t) distributions in the following 
way (In is the nth order and I0 the initial height of the first order SAXRD peak). The 
Fourier transform of the electron density ρ was made to obtain the ampli tude of the wave 
scattered by the electrons of the atoms of the specimen ( )sA �  (scattering ampli tude; s�  is 
the scattering vector). For example, for a multilayer it is given by [ 14]: 
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where s is the component of s�  in the z direction (z is the direction of the modulation, i.e. 
sx = sy = 0, sz = s), N the number of bilayers composing the multilayer, Λ the modulation 
length, Ae the scattering ampli tude of an electron and i is the imaginary unity. The square 
of this quantity vs. s gives the normalized (b Ae) small angle X-ray diffraction spectrum.  

A multilayer can be considered as a one-dimensional superlattice with Λ lattice 
parameter, and the basis is one bilayer. The absolute value of the reciproca-lattice vector 
( g� ) of this superlattice is 1/Λ. Thus, since s = n/Λ (according to the Bragg equation), from 
equation (III .10) the square of the nth order normalized scattering ampli tude, i.e. the nth 
order normalized intensity is:  
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III.1.2 Results and Discussion 

First, in order to check our calculation procedure, the programs were run with a 
concentration independent diffusion coeff icient, i.e. with m = 0. Figure III .1 shows that, as 
expected, the curves obtained from the continuum as well as discrete model coincide with 
each other for Λ > 8d (d = 0.3 nm). 
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Figure III .1 Comparison of the decay of the height of the first order X-ray peaks (a) for Λ = 4  = 1.2 nm 

and (b) for Λ = 8  = 2.4 nm for continuum (solid line) and discrete (dotted line) models when the 
diffusion coefficient is concentration independent. Note that in (b) the slopes of the two curves 
differ by less than 5%. 

 
For the simulation of the effect of the strong concentration dependence of D, the value 

of m, and accordingly the value o  
 

 emm log=′  (III .12) 
 

was changed (0 ≤ m’  ≤ 7.3, m’  is introduced in order to make the comparison easier with 
experimental data usually plotted on log  D vs. 1/T, or log D vs. c). Figure III .2 ill ustrates 
the range of the input parameters for D used in the calculations. 
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Figure III .2 The assumed concentration dependencies of the diffusion coefficients in the calculations; 

each straight line corresponds to a given m or m’  value [see equations (III .1) and (III .12)] 

 
Figure III .3 contains the concentration distributions at different times for the discrete 

and continuum models as well, when D strongly depends on the concentration, i.e. 
m’  = 7.3. There are five main interesting features of the curves: 

(i) In both cases, due to the fast diffusion in vanadium, there is a fast homogenisati
on the vanadium side; here the concentration profil e is practically flat at each time 
and only the amplitude of the composition modulation decreases gradually. 

(ii) There is a shift of the boundary between the pure Mo and the V(Mo) alloy towards 
the Mo side. The boundary remains sharp although its height gradually decreases. 

(iii  The shape of the boundary is different in the two models: in the continuum model 
(Figure III .3b) it remains almost as sharp as it was at the beginning (the small sharp 
break on the curves at the first three times can be an artefact of the finite difference 
calculation). On the other hand in the discrete model a layer -by-layer dissolution of 
Mo can be observed (Figure III .3a). For example on the curve a t = 5×103 s the 
sharp break ill ustrates that from the original (atomic flat) interface the first atomic 
layer partially dissolved. This dissolution continues until almost the whole layer 
dissolves (see the curve at the next time), and the dissolution of the new layer start
(curve a t = 4×104 s). The “interface” can be also two or three atomic layers thick: 
the dissolution of the next layer can start before the previous one has been finished 
(curves at t = 7.5×104 and t = 2.5×105 s). This plane -by-plane dissolution 
mechanism is also reflected in Figure III .4, where the concentrations in different 
lattice planes are plotted as a function of time. This layer -by-layer dissolution 
behaviour is also reflec ed on the curve shown i Figure III .5, where, in order to 
emphasise the effect of above layer-by-layer dissolution, the derivative of the ln I/I0 
vs. t function is also plotted. It can be seen that around points where a new atomic 
layer starts to dissolve there is a small enhancement in the homogenisation process. 
The minima (indicated by arrows) shown in Figure III .5b correspond to the 
moment when the concentration profile changes its shape from convex to  concave 
one (on the Mo side). The last wide minimum (not indicated by arrow) indicates 
the beginning of the acceleration due to the consumption of the Mo layer 

(iv) When the boundary (its height is still about 0.4 -0.5) reaches the centre of the Mo 
layer the homogenisation process suddenly considerably accelerates because of the 
consumption of the Mo layer (which has a very low diffusivity and thus serves as a 
diffusion barrier) in both models. It can be seen in Figure III .6 that there is indeed 
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an acceleration of the process and the slope of the ln  I/I0 vs. t function visibly 
increases. Obviously the beginning of this effect is Λ dependent. Note that in this 
plots the small effects illustrated in Figure III .5 cannot be seen. Thus while the 
sudden acceleration caused by the elimination of the last slab of the slow diffusing 
component is large enough to be experimentally well detected, probably the 
detection of effect of the layer by layer dissolution will be a more delicate problem. 

(v) Although in the case shown i Figure III .6a Λ = 16d, there is a definite difference 
between the rates of the processes in the two models: the continuum model gives a 
faster homogenisation. This is also ill ustr ated in Figure III .6b, where it can be seen 
that the validity limit of the continuum model is shifted by about one order of 
magnitude as compared to the case of the concentration independent (linear) 
problem. Figure III .7 summarises the results of our calculations carried out for 
different m’  values by giving the values of the critica Λc (above which the 
continuum model is valid) as the function of the exponent m’ = m lg e. It can be 
seen that for the range covered here, the validity limit of the continuum model is 
shifted by about one order of magnitude. This means that for modulation lengths 
typical in experiments for e.g. in Mo-V system, the continuum approach cannot be 
used.  

 

 
 

Figure III .3 Concentration distributions at different times for (a) the discrete (the solid lines drawn only 
to guide the eye) and (b) continuum models at T = 1053 K and for Λ = 6 nm and m’  = 7.3 (see also 
the text) 
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                  Figure III .3 

 
 

 
Figure III .4 Concentrations in different atomic planes as a function of time 
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Figure III .5 Usual decay of (a) the height of the first order X-ray peak and (b) its time derivate for the 

discrete model, obtained from the concentration curves shown in Figure III .3a 
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Figure III .6 Comparison of the decay of the height of the first order X-ray peaks for Λ = 16d = 4.8 nm 

(a) and for Λ = 160d = 48 nm (b) for the continuum (solid line) and discrete (dash-short dash line) 
models when the diffusion coefficient strongly depends on the concentration (m’ =  7.3). 

 

 
Figure III .7 Values for the critical modulation length, Λc, above which the continuum model is valid, as 

a function of the value of exponent in the concentration dependence of D [m’ = m lg e: see also 
equati (III .1)]. 

 
Finally, it is worth investigating the behaviour of the higher order peaks of the sma

angle X-ray diffraction spectrum, in order to compare our results to the hypothesis o
Menon and de Fontaine [9] [see I.1.3.5b)]. Figure III .8 shows that this statement is valid 
for both models in our case as well . In this figure m’  = 1 corresponds to the case 
investigated by Menon and de Fontaine [9]. 
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Figure III .8. Decay curves of the height of the higher order X-ray peaks for T = 1053 K, Λ = 20d for the 

continuum model at m’  = 1 (a) and m’  = 7.3 (b) as well as for the discrete model at m’  = 7.3 (c). 
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III.1.3 Conclusions 

We have shown that in case of strong (exponential) concentration dependence of the 
interdiffusion coefficient, the large asymmetry is manifested in 
 

(i) a fast homogenisat on on the side where the diffusion is faster, and here the 
distribution is practically flat and only the amplitude of the composition 
modulation decreases with time 

(ii) a shift of a sharp boundary between the slow component and the newly formed 
(homogeneous) alloy; and when the slab of the slow component is used up the 
homogenisation process is considerably accelerated  

(iii  a difference between the results obtained from the continuum and discrete models: 
the shape of the moving boundary changes with time in the disc rete model and it 
shows a layer -by layer dissolution kinetics, while in the continuum model the 
interface remains atomic sharp 

(iv) a strong change in the range of the validity of the continuum model: this change 
depends on the strength of the concentration dependence o D, and in many rea
multilayer systems with typical modulation length of few nanometer, it can break 
down. 

III.  CONSEQUENCES OF THE DIFFUSIONAL ASYMMETRY 

In this paragraph, experimental results obtained by SAXRD [ 15], Rutherford 
backscattering (RBS) [ 16] and Auger depth profili ng (AESDP) [ 17] on Si-Ge 
homogenisation will be shown.  

III.2.1 Introduction 

In accordance with the linear approach, the ln  I/I0 versus t curve (I = I1) should 
decrease according to [see equation (I.32) and I ∝ A1/2] 
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2
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π
. (III .13) 

 
Thus the decay of the first order normalized intensity is a linear function of time and its 
slope is proportional to the interdiffusion coeff icient. This relation is obtain ed for 
sinusoidal modulations, as was mentioned in I.1.3.3a). However, it can also be used for a 
general periodical composition modulation because it can be described by a Fourier series 
and the Fourier components develop independently as a function of time. Furthermore, i
linear approach, the higher harmonics in that series will decay rapidly, so that after some 
interdiffusion the fundamental will be the only significant term. That is, the composition 
modulation will become si nusoidal, only the first order SAXRD intensity will be observed, 
and equation (III .13) can be used directly [18]. 

According to recent works, however, frequently there is a significant initial curvature 
on the ln I/I0 vs t curve, which is many times explained by structural relaxation and stresses 
[19]. Nevertheless in the pervious paragraph, we could already observe that in case o
concentration independent diffusion coeff icient the intensity decay function is linear 
(except for the homogenisation part, see Figure III .1), whereas when D depends on the 
composition, there is a significant curvature, although there are no stress effects or 
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structural relaxation. For that reason, in this paragraph a detailed analysis will be given 
regarding the strong concentration dependence of the diffusion coeff icients in amorphous 
multilayers and its influences on the ln I/I0 vs t curve which can give another possible 
explication for the curvature mentioned above. Moreover, dir ect studies of the 
concentration distributions by Rutherford backscattering (RBS) and Auger depth profili ng 
(AESDP) will also be shown. 

By SAXRD, multilayers with only short modulation length can be investigated. Thus 
according to the results of the previous paragraph, regarding the simulation of diffusional 
processes, the discrete model should be used. But, there are no vacancies and stress effects, 
whereas they can be important from intermixing point of view of. To lif t this contradiction, 
we wanted to choose an amorphous system where the continuum model can be also used. 
Furthermore, in order to study a pure intermixing, we wanted to choose an ideal or near 
ideal solid solution system (V ≅ 0). The Si-Ge system is an ideal candidate for this since it 
has a complete mutual solubili ty and they can easily produced in amorphous state. 
Additionally, these amorphous multylayers are of considerable microelectronic interest 
[20]. 

III.2.1.  STRUCTURAL RELAXATION AND NONLINEARITY 

If the curvature of the ln  I/I0 - t curves at the beginning is caused by structura
relaxation, the interdiffusion coeff icient should depend on t [19]: 

 
 ( ) τteDDtD −+= 10

~
, (III .14) 

 

where D0, D1 are constants and τ is the relaxation coefficient. Therefore ( )tD
~

 is 
concentration independent. Considering a periodical concentration modulation [ c-
c0 = A(t) cos (hx)], from equation (I.30) for κ = 0: 
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This equation can be integrated, thus the ln I/I0 versus t function is given by:  
 
 ( )[ ]ττπ teDtDII −−+

Λ
−−= 1

8
ln 102

2

0 . (III .17) 

 
Consequently, in a Λ2ln I/I0 versus t plot all intensity decay curves should run together if 
only structural relaxation was present and caused the upward curvature at their beginnings. 
As it can be seen in Figure III .9, it is not satisfied. 
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Figure III .9 Experimental Λ2ln I/I0 versus t curves for amorphous Si/Ge system (T = 703K) [15] 

 

III.2.2 Direct experimental evidences on the diffusional asymmetry and its 
consequences 

In order to check directly the validity of our theory according to which the diff usion is 
asymmetric, consequently the interface remains sharp and shifts, we made two experiments 
being able to uncover the composition distribution of our samples: Rutherford 
backscattering (RBS) and Auger depth profili ng (AESDP). In this paragraph the results of 
these experiments will be presented. 

III.2.2.  RUTHERFORD BACKSCATTERING 

The RBS analyses were performed using 1 MeV He+ beam at the 5 MeV Van de Gra
accelerator of ATOMKI in Debrecen. The backscattered particles were detected at 165° to 
the beam direction with a 14 keV energy resolution PIPS detector. The parameters of the 
measurements were optimised by calculating the depth resolution for Ge and Si at different 
depths. For these calculations the latest upgrade of DEPTH code, which software is 
generalised for multilayers, was used [ 21,22]. The RBS spectra were evaluated and 
simulated by the RBX computer code [23]. 

We tried to detect directly the theoretically predicted thickening of the Ge layer. 
Several high-resolution RBS analysis were done for this reason with a depth resolution of 2 
nm for the first Ge layer being at 10-20 nm depth. However, experimental observation of 
the above effect was not unambiguous. By evaluating and simulating the measured spectra 
we got the best fit by taking into account the thickening effect [see Figure III .10 (a)-(b)]. 
According to the simulated layer structures the depth resolution at these experimental 
conditions was not enough to detect directly the thickening of the Ge layer, as it was just 
about 10% of the layer thickness. 
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Figure III.10 RBS spectra of a Si/Ge multilayer sample with repeat length of 20 nm: (a) experimental 

and simulated (solid line) spectra of the as -received sample; (b) as -deposited and annealed sample 
(683 K, 100 h), simulated (solid line), me asured before and after annealing (fill and hollow circle, 
respectively). [16] 

III.2.2.  AUGER DEPTH PROFILING 

Figure III.11 shows one period of the measured depth profiles for the as-received and 
annealed (680 K, 100 h) specimens, respectively. It is clear that the structure of specimen 
changed due to the annealing; the thickness of the silicon layer decreased, and the silicon 
concentration in the germanium layer increased. On the other hand, no germanium could 
be observed in the silicon layer. It should be mentioned that silicon was also present in 
germanium layer of the as-received specimen. This silicon can be attributed to some 
contamination from the sputtering system.  
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Figure III.11 One period of the measured depth profiles for the as -received and annealed specimens. 

[17] 

 
In the case of the as -received specimen, the best agreement between the measured and 

simulated depth profiles was obtained by supposing an original structure of 19 n
Ge(94%)Si(6%) and 17 nm pure Si, and an interface waviness of 1.8 nm amplitude. 
Applying this method, the thickness of all layers in the specimen (supposing the same 
waviness) has been determined to be 18.6±0.6 and 17.2±0.5 nm for the Ge(94%)Si(6%) 
and pure Si layer, respectively. Theses thicknesses slightly differ from the nominal ones 
(18 nm Si/ 18 nm Ge). 

Figure III.12 shows the measured and simulated depth profiles (assuming the same 
waviness) for a period of the depth profiles in the case of the heat treated specimen. In this 
case we have obtained, considering all the layers, the following structure: 21.3 ±0.7 nm 
Ge(86%)Si(14%) and 14±0.5 nm pure Si. 
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Figure III .12 Measured and simulated depth profiles for the annealed specimen. [17] 

 
The results clearly show that the diffusion is indeed ver y asymmetric. In accordance 

with our calculations, the sili con could enter into the germanium layer but the germanium 
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could not diffuse into the silicon. At the same time, due to the sili con diffusion to 
germanium, the germanium layer became thicker and the thickness of Si decreased from 17 
to 14 nm. It is also clear that during the heat treatment the sharpness of the interface 
remained the same, which is also in accordance with our calculations. On the other hand, 
our results clearly indicate that the diff usion coefficient should strongly depend on the 
concentration and consequently measurements based on the SAXRD of multilayers cannot 
be interpreted by neglecting nonlinear effects and/or relying, e.g., on the effects o
structural relaxations alone. 

In conclusion the Auger depth profili ng technique provided direct evidence on the 
asymmetric interdiffusion in amorphous S -Ge system. Due to the strong concentration 
dependence of the interdiffusion coefficient, the sili con almost homogeneously had been 
distributed in the Ge layer and there was practically no Ge diffusion into the Si. 

III.2.3 Calculations on the combined effects of nonlinear diffusion and stresses 

III.2.3.  INPUT PARAMETER SET 

In order to solve the coupled equations (I.68) - (I.70) and (I.54), one has to specify the 
necessary input parameters. Table III .1 shows those of them which were kept constant 
during the calculations and correspond to the amorphous Si -Ge system [19,24]. 

 

Table III .1 Input parameters kept constant during the calculations corresponding to Si-Ge system 

T [K] ΩSi [m
3/mol] ΩGe [m

3/mol] Ε [Pa] ν η [Pas] 
700 1.20 × 10-5 1.36 × 10-5 8.40 × 1010 0.3 2 × 1012 

 
Furthermore, we assumed, in accordance with the binary phase diagram [25] and 

Spaepen [19], that the Si-Ge system is nearly ideal, i.e. V = 0 and thus κ = 0 and Θ = 1, 
therefore 0=ge

ij  (i = Si or Ge) [see Appendix at the end of this chapter]. 

From compilations of diffusion data in crystalli ne Si-Ge all oys [26,27], it is known that 
the diffusion coeff icient depend on the composition. In this work, in order to get more 
relevant estimate of the order of magnitude in amorphous state, the absolute values of DSi 
at 700 K were fitted to experimental data for the concentration dependence published i
[28,29,30]. For the ratio o DSi/DGe, we supposed that it is independent of the concentration 
and equal to 2.4 ( Figure III .13). This is in accordance with the experimental fact tha
DSi > DGe and is within the all owed range determined by the scatter of experimental data 
for tracer diffusion of Ge and Si in crystalli ne Si [19]. 
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Figure III .13 Concentration dependence of the diffusion coefficients used in the simulation. Triangles 

denote experimental data measured in amorphous Si-Ge system by Prokes [28,29,30]. 

 
Figure III .14 shows the concentration and pressure distribution at different annealing 

times for Λ = 5 nm. It can be seen in Figure III .14a that, due again to the strong diffusional 
asymmetry, there is a similar behaviour which is shown already in Figure III .3 for the Mo-
V system. The diffusion in the Ge-Si alloy is very fast and almost a flat concentration 
profile is observed in this part, whereas there is a shift of boundary between this alloy and 
the pure silicon. The pressure distribution shows a sharp tensile peak on the sili con side 
just at the boundary, and relaxation of this becomes intensive when the pure silicon has 
been consumed (Figure III .14b). Figure III .14c shows the l  I/I0 versus t curves which 
presents a significant upward curvature at the beginning as it  was seen and discussed in 
details in the previous paragraphs. It is worth noting that this calculation was repeated for 
stressfree case and stress effects did not modify the behaviour of the composition profile 
and the time evolution of the intensity curve only its ‘slope’ . 
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Figure III .14 Concentration (a) and pressure (b) distribution at different annealing times for Λ = 5 nm 
and the corresponding ln I/I0 decay curve (c) 

 

III.2.4 Conclusions 

Investigating the combined effects of stress and non-linearity due to the concentration 
dependence of the diffusion coefficients, it was shown that in the Si -Ge system not only 
the concentration but the pressure distribution is also very asymmetrical. Furthermore, 
stress effects do not modify the behaviour of the composition profile and the time 
evolution of the intensity but slow down the homogenisation.  
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III.  INTERPLAY OF NONLINER DIFFUSION AND SURFACE SEGREGATION 

The growth of nickel onto the  (111) surface of a Cu single-crystal at room temperature 
and its dissolution kinetics were recently investigated by low energy electron diffraction 
(LEED) and Auger electron spectroscopy (AES) [31,32]. Measurements of the dissolution 
of nickel in copper were also performed by Auger spectroscopy in the temperature range o
635-721 K. For the evaluation of the Ni bulk diffusion coefficients, a simple analysis of the 
kinetics, using a thin film solution of the diffusion equation, has been applied. It was 
concluded that the values obtained are in agreement with the Ni impurity diffusion data in 
Cu published elsewhere [33,34,35]. 

The aim of this paragraph is to propose a more sophisticated method to evaluate the 
experimental kinetics of dissolution/segregation of thin layers of Ni into Cu(111) and to 
investigate the effect of surface segregation on the interdiff usion between the finite N
layer and the semi-infinite Cu substrate. Although several studies have been devoted to 
surface segregation in Cu(Ni) system [ 36,37], kinetic effects in a discrete lattice mode
have not yet been studied. Since the nickel thickness was between 3 and 14 equivalen -
monolayers (eq-ML), deviations from the continuum description of diffusion are expected 
(see III.1) and, due to the interplay between dissolution and segregation, the effective 
diffusion coefficient determined should depend on time. As we will see, our simulation 
indicates a step-wise character of the dissolution and an interesting in teraction between 
surface segregation and nonlinear diffusion. On the basis of these calculations a procedure 
for the evaluation of an averaged diffusion coefficient is given. 

Besides the re-evaluation of our previous results on 8 eq-ML’s [31], we also carried ou
new measurements with 3, 6 and 14 eq-ML’s in the temperature range of 600-730 K, and 
they have been evaluated in the same way. 

III.3.1 Method for the evaluation of dissolution kinetics 

The calculations can be divided into three successive steps: i) Calculations of time 
evolution of the concentration profiles in a discrete lattice model for an initial distribution 
of several atomic layers of Ni on the semi-infinite Cu slab. ii) Calculation of the intensities 
of the Auger signal coming from the distributions obtained in step i). iii ) Determination of 
the diffusion coeff icient from the time evolution of the Auger signal. Note that in the 
simulations - in accordance with [25,38] – it was supposed that there is a complete mutua
solubili ty in this system. 

III.3.1.  TIME EVOLUTION OF CONCENTRATION PROFILES IN A DISCRETE LATTICE 

The model used in our calculations concerning to the time evolution of concentrati
profiles is based on Martin’s deterministic kinetic equations [ 39] described i I.1.3.3b), 
I.2.2.1 and III .1.1.2. 

To compare the theoretical results with the experimental ones, the calculations were 
conducted for the following initial distributions: 

I) 3ML of nickel 
II) 8ML of nickel 

on the top of a Cu(111) monocrystal containing 51 lattice planes ( i.e. N = 54 and N = 59 
for I and II, respectively) and 

III)  100ML of nickel 
on the top a semi-infinite Cu(111) monocrystal. The following input parameters were 
chosen: T = 1000 K, VNiNi = - 0.74 eV ,VNiCu = - 0.66 eV, VCuCu = - 0.58 eV (these values 
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were calculated from the cohesive energies of pure metals [ 40]). Note that, since it was 
supposed that the system is ideal, (VNiNi+VCuCu)/2 = VNiCu. Thus, not regarding the 
concentration independent terms in equations (I.44) and (I.75), the activation energies are 
determined by (VNiNi-VCuCu). 
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Figure III .15 Time evolution of concentration profi les in Ni/Cu(111) discrete lattices: (a) 3ML of nickel 

(I-system:) and (b) 8ML of nickel (II -system). (For the meaning of time units shown in the insert, 
see the text) 

The time evolutions of the concentration profil es calculated from equati (I.41) are 
presented in Figure III .15. The time shown in the figures can be converted to "real" time b
the relation treal/t = ν-1exp{E0-z(VAB+VBB)/kT} . Note that, to reduce the computing time, a 
higher temperature was chosen in the computer simulation than the experimental annealing 
temperatures. This choice does not influence the characteristics of the dissolution kinetics, 
because it was supposed that the Cu-Ni system is ideal. It can be seen, in accordance with 
[36,37], that Cu segregates to the first surface layer. However, in case I (Figure III .15a), 
surface segregation of copper begins already after 26 time units, whereas in case II (Figure 
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III .15b) the surface segregation starts only after 250 time units. This is an obvious 
consequence of the different initial Ni thicknesses. 

In Figure III .15 the most interesting feature is the step-wise character of the N
dissolution. It can be especially well seen for case II that the dissolution starts at the 
interfacial layer, and until this is not consumed, the next layer remains complete (see in 
Figure III .15b the curve related to 90 times units: only the concentration of the 5th plane 
changes while the 4th and 6th planes remain almost pure Ni and Cu, respectively). Thus the 
interface shifts step by step. This layer -by-layer dissolution takes place until the moving 
“interface” reaches the Ni layer just before the last. Then, due to the driving force for 
surface segregation, the intermixing will be continued by the saturation of Cu in the top 
layer. Thus the change in the second layer will be retarded according to the segregation 
isotherm. Figure III .16 shows the concentration of the surface layer as a function of the 
concentration i the second layer  (kinetic segregation isotherm) and the theoretical 
McLean isotherm (equili brium segregation isotherm in monolayer limit; segregati
energy: ∆Hseg = zv(VBB-VAA)/2 [41]). This indeed corresponds, as it is expected, to a 
McLean isotherm and llustrates that the dissolution kinetics is linked to the segregation 
isotherm (“local equili brium” [ 42, 43]), which is in good agreement with experiments 
[44,45,46] and other predictions obtained by a different model [ 37]. Finally, after the 
saturation of the surface layer by Cu, the final homogenisation takes place by the complete 
dissolution of the second layer.  
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Figure III .16 Segregation isotherm of Ni/Cu system at 1000 K for cases I and II as well as the 

theoretical McLean isotherm. 

 
In Figure III .15 we ill ustrated the case when the Cu substrate was finite (with 51 

planes). However, as in many experiments, if a semi-infinite substrate is used then 
c1=…ci-1=1 (in the Ni) and ci+1=…= c∞=0, because the diffusion coefficient strongly 
depends on the concentration and has a very large value in Cu ( i.e. Γi-1,i<<Γi,i+1) and thus 
Ji-1,i<<Ji,i+1. Consequently equation (I.41) can be reduced to: 
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1,1, ++ Γ−=−= iiivii

i czJ
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. (III .18) 

 
On the other hand, the atomic flux from plane i to (i+1), ji,i+1 (=Ji,i+1/A where A is the area 
of the specimen perpendicular to the direction of the diffusion), can also be given by 
(discrete Fick’s first law): 
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where Ω is the atomic volume (Ω=dA and d is the distance between the atomic planes in 
the direction of the diffusion). Note again that ci+1≅0, since the substrate is se -infinite. 
The speed of the interface shift, v, is related to j as 
 
 Ω−= vj  (III .20) 
 
and thus 
 
 

v
ic

d
D −= . (III .21) 

 
{ In the above equations D has the meaning of the intrinsic diffusion coefficient (composed 
as a product of the tracer diffusion coefficient and the Darken thermod ynamic factor, Θ 
[47]) which, in the present case, is given b  
 
 

1,
2

+Γ= iivdzD . (III .22) 

 
Since in an ideal syste Θ = 1, and if the jump frequencies are independent of c, i.e. Γi,i+1 

= Γi,i-1, Γ=zv(Γi,i+1+Γi,i-1), and thus ½Γ=zvΓi,i+1 equation (III .22) equivalent to D=½Γd2 
(see Eq. (1.11) in [48]).}  

For the estimation of D from equation (III .21) the knowledge of v/ci is needed. From 
equations (III .18) and (III .20), one can write 
 
 






=Γ−= +

dt

dc
cz

d
i

iiiv 1,

v
. (III .23) 

 
This result shows that v/d is in fact the decay rate of the concentration of the interface layer 
ci. 

Figure III .17a shows the v/d versus t function obtained from numerical solution of 
equation (III .18) for ci(t), taking also into account the concentration dependence o Γi,i+1 
given by equations (I.43) and (I.44). Having ci(t) the v(t)/d function was calculated using 
equation (III .23). 
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Figure III .17 One period of the interface shift speed versus time. The dashed line denotes its average. 

 
We have seen that the dissolution of the ( i-1)-th plane begins o nly after the 

complete dissolution of the i-th plane. This means that this layer -by-layer dissolution 
results in a periodic behaviour as a function of time: each plane dissolves subsequently 
reproducing the same process. Therefore v/d (and thus D) is also a periodic function of 
time and the time evolution within one period characterizes the dissolution of one 
individual plane. In fact this is what is shown in Figure III .17 for v/d. Although, the value 
of v/d (and D) can change considerably, it is worthwhile to define an average value of v/d 
characterising the mean speed of the interface shift, <v>/d=(Td) -1∫v dt, where T is the time 
necessary for the consumption of one layer. Due to the step-by-step character of the 
dissolution, this average speed of the interface shift should be constant, independent o
time. This result is inherently related to the strong non-linearity of the problem: the strong 
concentration dependence of the diffusion coefficient (or Γi,i+1) shifts the validity l imit o
the continuum approach (from which a parabolic law i.e. v ∝ t-1/2 would be expected) out 
of the range considered here. Of course, after the dissolution of more and more layers the 
supposition that c i+1≅0 will be less and less valid and we will have  a transition to the 
parabolic dissolution. Obviously, this transition will depend on the concentration 
dependence of the diffusivity. This is very similar to the results obtained i III.1, where the 
shift of the validity limit of the continuum approach to higher diffusion distances was 
obtained in multilyares with increasing non -linearity. 

Thus the time evolution of the thickness of Ni layer, containing originall n0 atomic 
layers, can be given by: 

 
 

( ) t
d

ntn
v

+= 0 . (III .24) 

 
In order to ill ustrate the validity of averaging leading to equation (III .24), Figure III .18 
shows the position of the interface versus time, obtained from simulation for a semi -
infinite Cu(111) substrate with 100 atomic layers of Ni. The position of the interface, y (in 
monolayers units), is defined as the place at which straight line interpolated between the 
two neighbouring planes, havi ng compositions above and below c = 0.5, crosses the c = 0.5 
value. Due to this the curve in Figure III .18 has periodic oscillations around the straigh
line fitted. Because of the log-log plot the first part of the curve (up to y = 1, i.e. log y = 0) 
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clearly shows the time evolution illustrated already in Figure III .17. On the other hand, the 
slope of the straight line fitted is equal to 1 ± 8×10-4, i.e. the average shift is indeed linear. 
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Figure III.18 Position of the interface versus time for the dissolution of 100 Ni layers into the semi -

infinite Cu(111) substrate (see also the text). 

III.3.1.  DECAY OF THE AUGER CURVES 

In the case of a homogeneous specimen containing n layers, the measured Auger 
intensity can be given by the following formula [49] : 

 
 ( ) 11

1
1

1
1

2
11 1

11 IIIIIII
n

nn
n α

αααααα −
−=+++=++++= −− 88  (III .25) 

 
where I1 is that part of the total intensity which would come f rom each layer without 
attenuation. The usual form of the attenuation coefficient is:  
 
 ( )[ ]ϑλα cos/1exp−= , (III .26) 
 
where λ is the inelastic mean free path (IMFP) [in monolayer (ML) units], and ϑ is the 
emission angle of Auger electrons to the normal of the surface of the sample. I n→∞, i.e. 
for a bulk specimen, the Auger intensity is: 
 
 ( ) ∞∞→∞ −=⇒−== II

I
II nn

αα 1
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lim 1
1 . (III .27) 

 
Since there are (i-1) layers on the top of the i-th layer, the signal coming from layer i is 
attenuated by αi-1; hence the contribution of the i-th layer to the total measured intensity is: 
 
 ( ) ∞

−−= II i
i

11 αα . (III .28) 
 
The atomic fraction of the i-th layer of an AB alloy can be determined using the foll owing 
equation: 
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where I(i) is the Auger intensity coming from the A atoms of the i-th layer. The total 
(measured) intensity can be expressed as the sum of the contributions of the layers: 
 
 ( ) ( ) ∑∑

=

−
∞

=
−==

n

i

i
i

n

i

cIiII
1

1

1

1 αα . (III .30) 

 
The Auger curves corresponding o the above evolution of the concentration profil es, 

shown in Figure III .15, are calculated fro (III .30) and reported in Figure III .19. In the 
present case, the values o λ [λ(Cu920eV) = 1.19 nm, λ(Ni 848eV) = 1.10 nm] were calculated 
using Seah and Dench formalism [50], and ϑ = 42°. Moreover, a theoretical peak-to-peak 
height ratio, q, was calculated from the Auger curves: 
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where the superscript zero denotes the pure element in the bulk form and S is the relative 
Auger sensitivity factor of both elements. This value can be estimated from the 
experimental bulk Ni and Cu Auger signals as S = I0

Cu920/I
0
Ni848 = 1.13. In order to show 

the influence of the segregation we have investigated the phenomenon with and without 
copper surface segregation. The results are presented in Figure III .19 for cases I and II, 
respectively. For the present curves without segregation, it was supposed that there was no 
free surface, i.e. the 1st, original surface, layer was covered by a 0th layer for which c0 = c1. 
It can be seen that at the beginning (region a in Figure III .19), no major differences can be 
observed between the curves with and without segregation. In the central part (region b) 
the curves diverge. Furthermore, curves without segregation change faster and show one 
extra step. Finally all curves approach equili brium (region c). 

 



Nonlinear Diffusion 

 85 

0 20 40 60 80 100

time [a.u.]

pe
ak

-t
o-

pe
ak

 h
ei

gh
t [

a.
u.

]
Ni

Cu

Ni seg

Cu seg

a b c

(a)
 

0 100 200 300 400 500 600

time [a.u.]

pe
ak

-t
o-

pe
ak

 h
ei

gh
t [

a.
u.

]

Ni

Cu

Ni seg

Cu seg

a b c

(b)
 

Figure III .19 Time evolution of Ni and Cu Auger signals ( and -------, respectively) for 3ML (a) 
and 8ML (b) Ni layers. (Curves with and without marks ο refer to the case of with and without 
copper segregation.) 

In the first stage, the process is completely controlled by a concentration dependent 
diffusion on discrete lattice. The steps are related to the step-wise character of the problem 
and each step corresponds to the end of the consumption of the atomic layer considered. 
Since the diffusion of Ni depends strongly on the nickel concentration c, the dissolution of 
the individual atomic layers will become faster as c falls. It is due to the fact that the 
diffusion of both elements in Cu is much faster than in Ni (practically there is no diffusion 
in Ni). Note that this follows not only from the choice of interaction energies entering int
the activation energies of Γ [equations (I.44) and (I.75)] but also in accordance with the 
experimental self-diffusion coefficients in Ni and Cu [ 51] (they differ by a factor of about 
10-4 at 1000 K). The appearance of an additional step in the stage b on the curve without 
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segregation is due to the lack of segregation; there is no enhanced saturation in the first 
layer and the remaining two layers dissolve “normally” . 

III.3.1.  DETERMINATION OF THE DIFFUSIVITY 

This time evolution can be also determined from the dissolution kinetics measured b
AES in the following way. Using the equations (III .25) and (III .27), the Auger intensity 
coming from the A atoms of a specimen containing n A atomic layers on a B substrate is: 

 
 ( ) ∞−= ,, 1 A

n
AnA II α . (III .32) 

 
and the intensity coming from the B atoms of the bulk substrate is attenuated by the n A 
layers, i.e. the contribution of the substrate to the measured intensity is: 
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Thus the accumulation parameter: 
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and supposing that αA≅αB  (in Ni/Cu it is reasonable since λNi≈λCu): 

 
 1−≅ −n

Bnq α . (III .35) 
 

Thus one can determine n from this equation: 
 

 ( ) ( )
B

nq
tn αln

1ln +−= . (III .36) 

 
In general n(t) should be (according to Figure III .19) a step-wise function. However, if it i
approximated by a continuous curve ( e.g. if the resolution of the measurement is not high 
enough) then plotting the right hand side of (III .36) versus time the linearity can be 
checked and then the slope will be just equal to < v>/d [see equation (III .24)] and the 
intercept w l give an estimation of the original Ni thickness. 

As we have seen, from the numerical solution of equation (III .18) ci(t) and v(t)/d 
functions can be obtained. Obviously, if one defines an average value of v/d, as it has been 
done before, then a corresponding average value of c should also be introduced i
equations (III .21) and (III .23). As it is ill ustrated in b, this average value corresponding to 
<v>/d can be obtained. We have calculated it at different temperatures for the interaction 
energies (VNiNi-VCuCu) used in the numerical solution of equati (III .23). It can be seen in 
Table 1 that it is practically independent of the temperature. Furthermore, the value o c is 
also not sensitive to the ( VNiNi-VCuCu) difference: changing it by about 15% results in a 
change in c of less than 10%. Thus, in our temperature range, c is about 0.78. Substituting 
this value into equation (III .21) one can write approximately that in this system: 
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 vdD 28.1−≅ . (III .37) 

 
 

The physical meaning o c=0.78 can also be enlightened by the foll owing arguments. In 
contrast to diffusion with constant D (where the concentration gradient falls continuously 
with time, leading to parabolic law) in our case the linear shift of the interface with time is 
related to the constancy of the diffusion current [see equation (III .20)]. If we define a time 
independent average value of D, as we did, then the gradient of the concentration should be 
also constant i.e. <grad c> = <ci>/d (= 0.78/d in our case). Of course, in general, the 
numerical value of this average concentration will depend on the strengths of the 
concentration dependence of D. 
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Figure III .20 Common plot of one period of the concentration of the dissolving plane and the speed of 

the interface shift versus time. Dashed lines indicate the average values of v/d and c corresponding 
to each other (see also the text) 

Finally, it is worth to note that the evalua ion procedure proposed here can be generally 
used in all cases when the dissolution takes place by a layer -by layer mode into a semi-
infinite substrate if the interface shifts linearly with time. [I αA≅αB in equation (III .34) 
cannot be assumed, then n(t) can be determined from equation (III .34) instead of equation 
(III .36).] Obviously, if this linearity is not fulfill ed the relation between the diffusivity and 
the interface speed will be different from equation (III .21). Furthermore, important to not
that the determination of the n(t) function from measurements of the time evolution of the 
Auger intensities can bring an important information on the character of the process 
controlling the interface shift. For example, as it was shown in [ 43] and [52] if there is an 
interplay between surface segregation and tendency for strong phase separation, but the 
non-linearity is negligible, the shift of the interface is proportional to t1/2. 

 

Table III .2 Temperature dependence of the corresponding c. 

T [K] 1200 1000 800 700 
c 0.71 0.73 0.76 0.78 

 

III.3.2 Analysis of experimental data 

The general procedure applied for determination of kinetics is described in II.3.2.3. We 
just remark that prior to any nickel deposition, the Cu (111) sample was cleaned in situ b
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repeated cycles of argon ion bombardment and thermal annealing at 400 °C until 
impurity could be detected (checked by AES) and that during this cleaning the 
monocrystalline structure of Cu(111) was conserved (checked by LEED). The 
pseudomorphic growth of 3-14 deposited nickel layers have also been checked by LEED. 

The relative variation of the Auger signal is a smooth function of time, for 6 -14 eq-ML 
(Figure III .21a for 8 eq-ML and Figure III .21b for 14 eq-ML), whereas large fluctuations 
are observed for 3 eq-ML (Figure III .21c). In the latter case, it was not possible to use the 
proposed method because only a short initial sharp decrease of the Ni peak was observed. 
That is why the analysis of the experimental data, described above, can be carried out only 
for experiments made at: 721K, 713K, 701K and 679 K (in these cases the initial thickness 
of Ni was higher than about 6 eq-ML). As an ill ustration, Figure III .22 shows the thickness 
of Ni as a function of time calculated by equation (III .36) for 679 K. Note that usually, the 
first couple points fall above the straight line fitted to the first part of the n(t) functions. 
Since the samples were prepared at room temperature the reason of this misfit can be 
recrystalli sation and relaxation of the surface layers during heat treatment. Furthermore the 
change in the slope at the second layer (a t ≈ 4×103 s in Figure III .22) is a clear evidence 
of the effect of surface segregation. Nevertheless, from the slopes of the lines fitted to the 
first part of the curves, according to equations (III .24) and (III .37), the values of D have 
been calculated (with d = 0.2032 nm). 

The Arrhenius plot of the diffusion coeff icients is shown in Figure III .23 and the 
temperature dependence of the diffusivity can be given by: 
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Figure III .21 Measured Auger kinetics of nickel dissolution in copper for a) 8 eq-ML at 701 K, b) 14 
eq-ML at 721 K and c) 3 eq-ML at 639 K. 
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Figure III .22 Time evolution of the Ni thickness at 679 K. The first part of the curve fitted by a straight 
line corresponds to the part controlled by interdiffusion. 

 

Figure III .23 Temperature dependence of the intrinsic diffusion coefficient. 

 

III.3.3 Discussion 

In our calculations, due to the direct exchange of atoms, it was assumed that the 
exchange jumps of Cu and Ni are equal (i.e. CuNi

ii
NiCu

ii
→

+
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+ Γ=Γ ,11, ). This means that the intrinsic 

diffusion coefficients of Ni and Cu [see equation (III .22)] are equal to each other; 
DNi(c) = DCu(c), i.e. we are not able to distinguish the sel - and impurity diffusion. W
know that this is not the case in reali ty (see Figure III .24, where the Arrhenius plots for Cu 
self- and Ni heterodiffusion in Cu as well as for Ni sel - and Cu hetrodiffusion in Ni are 
different); this is an inherent limi tation of the model. Nevertheless, the concentration 
dependence of the intrinsic diffusion coefficient is naturally included. That is why we 
could calculate an averaged intrinsic diffusion coefficient belonging to cNi = 0.78. This 
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result points out an important difference in the interpretation of the diffusion coeff icients 
estimated in our work and the previous one [ 31]. In fact in [ 31], using the instantaneous 
source solution of the continuous Fick II equation, three main suppositions were made: 

i) there is no segregati  
ii) there is only a dissolution of Ni into the Cu ( i.e. the diffusion of Cu into the 

Ni was neglected; only nickel heterodiffusion was considered) 
iii) the intrinsic diffusion coefficient of Ni is independent of concent ration. 
iv) the process is controlled by a usual continuum diffusion behaviour 

(parabolic law)  
In [31], the diffusion coeff icient was interpreted as the Ni impurity diffusion in pure Cu 
(i.e. at cNi = 0), taking also into accoun that this system is ideal, and thus the intrinsic and 
tracer diffusivities are equal to each other ( i.e.Θ = 1). However, in our case, D is an 
intrinsic diffusion coeff icient corresponding to cNi = 0.78. Thus its value should be located 
between the two hatched regions i Figure III .24. As one can see, this criterion is satisfied. 
Furthermore, since practically all Arrhenius curves in Figure III .24 are parallel, the 
activation energies should be close to each other, which is also reasonable (see also [51]). 
 

Figure III .24 Arrhenius plot of nickel lattice diffusion coefficients in copper (ο our results) compared 
wit  the literature data. 

 
It can be seen from our calculations that the first two suppositions can be accepted 

at least in the first stage of annealing. Indeed, the supposition ii ) is generally valid and in 
fact it is a consequence of the strong concentration dependence of jump frequencies 
(diffusion coefficients). Furthermore the effect of surface segregation on the kinetics can 
be neglected until the time when the interface reaches the nex-to-the-last layer. 

There is obviously an important difference between our discrete model and the 
continuum one (which corresponds to the instantaneous or constant source solution of the 
continuous Fick II equation). As we have seen from our calculations, the shape of the 
concentration profil e during dissolution is not an erfc-type function as it should be for 
constant source. Instead, a layer-by-layer dissolution mode can be observed (see Figure 
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III .15 and Figure III .19) and the n ∝ t relation indicates that the process ca nnot be 
described by the parabolic law.  

It is worth noting that the behaviour shown i Figure III .15 is similar to tha
published by Saúl et al. [53]. However, in their case [Ag thin layer deposited on Cu(111)] 
the step-wise character is the result of the presence of the miscibili ty gap at the working 
temperature. A phase transition occurs in the interfacial layer during dissolution: the 
initially Ag-rich interfacial layer is transformed in a Cu -rich phase when its silver 
concentration reaches the bulk solubili ty limi t. This transformation mechanism continues 
layer-by-layer. 

Finally we note that, in this work we were not able to observe the step -wise 
behaviour because of technical limi tations. However we beli eve that it can be measured by 
a high-resolution surface analysis technique. We also note that the method can be used 
only when the deposited element has a higher kinetic energy transition (in the case of 
Auger measurements, of course) in order to be possible to use about -8 atomic-layer thick 
deposit. 

III.3.4 Conclusions 

We have investigated the effect of segregation on the dissolution of a thin Ni layer (3-
14 eq-ML) into a semi-infinite Cu substrate. Computer simulations have been also carried 
out to understand the detail s of the dissolution. On their basis we proposed a sophisticated 
method to analyse the experimental kinetics measured by AES.  

 
The most important results are the following: 

1) Our simulations indicated a step-wise character of dissolution and an interesting 
interference between the segregation and dissolution. Because of the strong concentration 
dependence of the diffusion coefficients of the diffusing species, the interface remains 
sharp and shifts until it r eaches the nex -to-the-last layer. In this part of the dissolu ion a 
concentration dependent diffusion on discrete lattice controls the process. Then, due to the 
driving force for segregation, the process continues by the saturation of Cu in the top layer. 
The change of the concentration of the second layer occurs according to the segregation 
isotherm. Finally, after the saturation of the surface layer by Cu, the final homogenisation 
takes place by complete dissolution of the second layer.  

2) We have seen that the thickness of Ni decreases linearly with time, indicating the 
strong non-linearity and the deviation from the continuum description. An averaged 
intrinsic diffusion coeff icient has been determined from the experimental AES kinetics of 
Ni dissolution into Cu substrate, obtained by the method developed in this paper. While the 
diffusion coefficient has a strong concentration dependence, this averaged diffusion 
coefficient belongs to a certain concentration which in our case is cNi = 0.78. At a given 
temperature this concentration corresponds to the mean speed of the shift of the interface. 
We have also determined the temperature dependence o D:  
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which (the activation energy) agrees well with the values published in the li terature for this 
system [33,34,54,55]. 
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APPENDIX: GRADIENT ENERGY TERM IN THE STEPHENSON 
MODEL 

As was mentioned in the paragraph I.1.3.4b), Stephenson [56,57] gave a set of general, 
coupled equations for the description of atomic currents, the resultant stress development 
and stress relaxation by Newtonian flow for interdiffusion. The most important difference 
of this description as compared to the treatment of the stress effects in multilayers by Cahn 
and Hilli ard [58,59,60] is that the stress relaxation and a convective transport (Kirkenda -
shift) are all owed. In the Cahn-Hilli ard treatment, due to the suppositions M1 = M2 and 
Ω1 = Ω2 [see I.1.3.3a)], only the difference of the che mical potentials of the two 
components had to be determined. Thus, for the use of Stephenson’s description, where  
the individual forms of the atomic currents are needed if the Kirekendall velocity is no
zero, a generalisation is necessary if the gradien energy coefficient is not zero. 

Since all eff ects taken into account are an additive term in the expression of atomic 
fluxes [e.g. equation (I.54) contains two, the first is related to the material transport and the 
second to the stress effect], it seems logical to join formally the gradient energy effect to 
the atomic flux as an additive term ( ge

ij ), i.e.: 

 
 2,1,gradgrad =+−−= ijpLDj ge

iiiiii ρρ  (III .39) 
 

where ge
ij  is proportional to the gradient energy coeff icient κ, therefore for an ideal syste

0=ge
ij . Note that from now on, our description is restricted to only one-dimensional case, 

but obviously it is possible to extend it to more dimensions. 
For the determination of ge

ij , we use the results according to which the local free 

energy per volume unity of a non-uniform system for ρ = const (1/ρ = Ω = Ω1 = Ω2) and 
for p = 0 is given by equation (I.26) : 
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and its variation by the atomic fraction c is: 
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where µi (i=1,2) is the chemical potential per volume unity. Moreover, according t
Prigogine [61] for a system in mechanical equilibr ium:  
 

 ( ) 01 21 =−+ XccX , (III .42) 
 
where Xi denote the chemical driving forces, which for an isotherm system are rela ed to µi 
as Xi = - grad µi. Thus combining equations (III .41) and (III .42), one obtains: 
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According to the definition [ 56] j i = MiρiXi, where Mi is the mobility and assuming that κ 
does not depend on the spatial coordinate, one gets:  
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where the last two expressions are the traditional form of the first Fick equation, but the 
diffusion coefficient is very complicated. For j2 a similar expression can be written. 
Equation (III .45) give also the relation between the mobili ty (Mi) and the intrinsic diffusi
coefficient (Di’ ). Note that in equation (III .45), the last algebraic transformation is possibl
only if of ρ = const. From this correlation, it is clear that for κ = 0 it results the usual 
relation [see equation (I.57)], considering that 0f ′′  in a binary solid solution model is:  
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Comparing equations (III .39) and (III .45) if p = 0, we have: 
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where Di is the intrinsic diffusion coeff icient of the uniform system. We can determine 
similarly that: 
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Thus, a general expression of flux was obtained for the case when 1/ρ = Ω = Ω1 = Ω2 = 

const bu M1 ≠ M2 (D1 ≠ D2), which contains all the effects (gradient energy, Kirkendall , 
stress) mentioned before. If ρ is not constant, the situation is more complex and a general 
(variational) met od is necessary for the general treatment. 
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Chapter IV 

Grain-Boundary Material 
Transport in Thin Films 

 In this chapter Ag grain-boundary 
diffusion in Cu will be determined by the 
Hwang-Balluffi method in C-kinetics 
regime from the Ag and Cu Auger signals 
measured on the surface of nanocrystalline 
Cu/Ag thin bilayers 
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Chapter I  

GRAIN-BOUNDARY MATERIAL TRANSPORT IN THIN FILMS 

From the Ag and Cu Auger signals measured on the surface of nanocrystalli ne Cu/Ag 
thin bilayers, the temperature dependence of the parameter ω’  for Ag grain-boundary 
diffusion in Cu [ω’=δkbDb/δsks, where ks is the surface segregation factor; ω’  = ω d2/2 due 
to the similar values of the grain size of the thickness, h, and the grain size, d, – see 
equation (I.78)] will be determined by the Hwang-Balluffi method in C-kinetics regime in 
the temperature range of 393-428 K. These values will be compared with triple products, 
P=δkbDb, determined in the temperature range of -804 K by Bernardini et al. [1] usin
radio tracer technique in B -kinetics regime. The temperature dependence of the surface 
segregation factor will be extracted as well [2,3,4]. 

IV.1 THEORY 

Using the Hwang-Balluffi equation [equati (I.77)], in principle it is po ssible to 
calculate the grain-boundary diffusion coeff icient, if the surface concentration of the 
segregated element is known. 

Auger Electron Spectroscopy can be appli ed for grain -boundary diffusion studies by 
using the surface accumulation method based on the observation of surface accumulation 
of the diffusing atoms on the terminal surface of the sample [ 7,5]. However, this method 
can be affected by the presence of even small amounts of impurities, disturbing the 
velocity of the surface diffusion [ 6]. The quantitative analysis is not evident. This question 
will be detailed in this section. 

IV.1.1 Surface accumulation paramete  

If the surface accumulation is measured by Auger Electron Spectroscopy, in order to 
eliminate the possible f luctuation of the Auger current, it is useful to define a peak height 
ratio [7]: 
 

 

∞

∞=
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,

BB

AA

II

II
q , (IV.1) 

 

where IA and IB are the measured peak-to-peak heights coming from the A and B atoms o
the spec men, respectively while IA,∞ and IB,∞ are the measured peak-to-peak heights 
coming from the bulk specimen containing only A and B atoms, respectively. This q 
parameter, representing the accumulation of the diffusant on the surface, is call ed the 
surface accumulation parameter. The value of q is sensitive to the details of the distributi
of segregated atoms since the Auger electrons corresponding to the measured peaks can 
have widely different Inelastic Mean Free Path (IMFP). 

Using equations (III .25) and (III .27), the Auger intensity coming from a homogeneous 
specimen containing n layers (or the part of the total intensity which comes from the n top 
layers of a homogeneous bulk specimen) is:  
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The concentration of A atoms in an AB bulk alloy can be defined by the following way:  
 
 

∞∞= ,, A
A
AB IIc , (IV.3) 

 
where IA

AB, ∞ and IA, ∞ are the Auger intensity coming from the A atoms of the bulk alloy 
and the Auger intensity coming from the bulk specimen containing only A atoms, 
respectively. According to this definition, it is also possible to determine the concentration 
of A and B atoms in n AB homogeneous surface layers deposited on a pure B substrate: 
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Since the substrate does not contain A atoms, IA

AB,n is equal to the IA measured intensity 
coming from the A atoms of the whole specimen. Using equation (IV.2), the concentration 
of A atoms is: 
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The concentration of B atoms is:  
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However, in the case of the B atoms, it is necessary to take into account the IB,n+1…∞ 
contribution of the substrate as well, thus IB

AB,n is not equal to the IB measured intensity 
coming from the B atoms of the whole specimen:  
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Using the definition of q and equations (IV.5) and (IV.7), the surface accumulation 
parameter for n accumulated layers is: 
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Using the usual form of the attenuation parameter [see equation (III .26)], the equation 
(IV.8), in two layers limit (n = 2), is the same as the one which was used by Hwang et al. 
in [1]. 

When there are monoatomic islands of A atoms on the B surface, introducing a 
surface coverage f (<1), equation (IV.2) can be rewritten as: 
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where the first and second terms i IB correspond to the intensity attenuated by A islands 
and to the direct intensity from the free B surface, respectively. Thus q is given by 
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Taking into account equation (IV.8) for n = 1, it can be seen tha f = cs, and thus from 

equation (I.77) ω can be also determined for the case when there is a discontinuous layer 
on the surface. 

The surface accumulation parameter can be determined experimentall y in the 
following form: 

 
 

,
/
/

920

356

,920920

,356356 S
I
I

II
II

q ==
∞

∞  (IV.11) 

 
where S is the so-called relative Auger sensitivity factor of both elements (for the present 
experiment S = I920,∞/I356,∞ = 0.26). 

IV.2 RESULTS 

Twenty years ago, Gibson and Dobson [8] described that annealing of thin (10-20 nm) 
epitaxial films of nickel or copper gr own on silver (111) at 300°C produced drastic 
changes in the morphology of the Ni or Cu layers. The flat deposits contracted into three -
dimensional islands. 

In our experiments, TEM was used to check the grain size of the nanocrystalline 
copper layer before and after heat treatment. It was shown that the grain size of the Cu 
deposited films corresponds to the thickness of the Cu deposited layer i.e. around 20 nm. 
The Ag/Cu couple was annealed at suff iciently low temperatures, so that the structure was 
froze  out [the copper grains size remained unchanged (around 20 nm) after annealing], 
and the diffusion occurred along the grain boundaries. 

Due to silver grai -boundary diffusion onto the copper surface, typical evolution of the 
356 eV silver Auger peak and the 60 and 920 eV copper peaks as a function of annealing 
time is plotted i Figure IV.1. Time evolution of cs calculated from equation (IV.8) for 
n = 2 is shown in Figure IV.2. For calculation of cs, we need to now the value of n, i.e. the 
thickness of the segregated layer. Hwang et al.  [7] considered that, due to the carbon 
contamination of the surface, the accumulation takes place probably in more than one top 
layers. In their calculations of Ag grain-boundary diffusion in Au, for example, they 
supposed that this surface homogenisation sets in the top two monolayers. Barthès et al. [9] 
(Ag-Ni system) supposed that this value is one. Because of the choice is not evident, we 
computed for both cases and we found that the method is not too sensitive to this 
parameter. However, due to the surface “cleaning” by ion sputtering, the surface is surely 
not perfectly smooth, thus we think that probably the “two-layer supposition“ is more close 
to the reali ty. This is why the results presented here are calculated for n = 2. 
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Figure IV.1 Evolution of the Ag(356) and Cu(60-920) Auger peak to peak heights with time at 428 K 
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Figure IV.2 The time evolution of ln(1-cs) at 403 K [cs has been calculated by the equation (IV.8), wit

n = 2] 

In our experiments, although c0 = 1 can be assumed in equation (I.77), the surface 
saturation value of cs was always smaller than 1, due for example to kinetics limi tations 
[10] and/or carbon contamination, thermal stresses caused by the differe nce of therma
expansion coefficients of the films and the substrate [ 11,12]. The same effect arises 
because of the presence o k” /k’  factor in the left hand side of this expression. Thus, taking 
into account that the value of [1 -exp(-ωt’ )] should be normali sed between 0 and 1, the 
calculated cs concentrations were normalized by the saturation value measured.  

Note that at 393 K and 403 K the surface concentrations never reached the saturation 
level, since at such low temperatures the diffusion was so slow that it was practically 
impossible to measure it. However, according to the tendency of the measured saturation 
kinetics, i.e. the cs vs. time, we have estimated the saturation value by extrapolation. 

Using the Hwang-Baluffi equation, under the conditions described above (and taking 
into account that [ 13] λ356 = 5, λ920 = 7, and ϑ = 42°, d = 21 nm) the δkbDb/δsks(= ω’ ) 
products have been calculated. Figure IV.3 shows the Arrhenius plot of this parameter, 
which can be given b  
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where R, T are the molar Boltzmann’s constant and the absolute temperature, respectively. 
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Figure IV.3 Arrhenius plot of the grain-boundary diffusion of Ag in Cu in C kinetic regime 

IV.3 DISCUSSION 

The determination of the surface segregation factors and the comparison of these 
values with the triple products ( P = δkbDb) obtained from the grain -boundary tracer 
diffusion of Ag in Cu in B kinetics regime [ 1] will be discussed in this section. 

Since in [ 1] the triple product P, was determined from tracer measurements and we 
measured the ω’  = δkbDb/δsks parameter, it is possible to estimate the surface segregation 
factor: 

 

 ssk
P δ
ω

=
'

, (IV.13) 

 
In equation (IV.13), only δs is unknown, and either one or two monolayers are assumed, 
one can obtain a reasonable estimate for ks (within a factor of two, which is independent o
the temperature). 

Before detailing this point, we emphasize the agreement betwe en values obtained in 
‘classical’ polycrystals at high temperatures in B kinetic regime and those concerning 
measurements performed at low temperatures by using nano-structured samples. This 
suggests a similar grai -boundary structure in both types of samples. This result confirm
some results obtained recently for nanocrystals [14,15]. It invalidates the idea of particular 
structures of grain boundaries in this type of material for the applied temperature range and 
time of the heat treatment.  

Furthermore in [1], using experimental data on Ag diffusion in Cu lattice published in 
[16], the triple products of Ag tracer diffusion in pure Cu as well as in a Cu -0.091at%Ag 
alloy were determined and the following Arrhenius equations were obtained: 
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The activation energy corresponding to the heterodiffusion of silver in pure copp er [see 
equation (IV.14)] contains the grain-boundary segregation energy. In an alloy, the 
radiotracer atoms have migrated in a grain-boundary for which k = cb

sat/cv = const in so far 
as i) the grain boundaries are saturated by non active silver before the tracer diffusion and 
ii) the radiotracer concentration is negligible. Supposing to a first approximation that the 
concentration of silver saturating the grain boundaries is independent of the temperature in 
the range of the studied temperature, the activation energy o Palloy (Q) corresponds to that 
of the grai -boundary diffusion coeff icient of sil ver in copper. Therefore, these are the 
values characterising Ppure which have to be used to calculate ks in equation (IV.13) and: 
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The value of the activation energy agrees very well with other data previously published: 
38.7 kJ/mol obtained from experimental surface segregation kinetics data by Eugène [17] 
and 37.6 kJ/mol by Bronner and Wynblatt [18], respectively. 
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Figure IV.4 Arrhenius plots of the grain-boundary diffusion parameters (P, δω’ ) measured in B and C 

regimes 

 
Figure IV.4 shows the Arrhenius plots obtained in the B and C -kinetics regime 

measurements and as it can be seen they are consistent with each other (taking δ = 0.5 nm 
in both cases): i.e. the activation energy o ω’ , which contains the surface segregation 
energy, is higher than that of Ppure and Palloy. It is reasonable, since if one assumes 
Arrhenius-type temperature dependence for both k’  = ks/kb and Db: 
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and considering that ω’  ∝ Db/k’ , the effective activation energy o ω’  is Q + ∆H’ . Now, it 
is reasonable to assume that the difference of the segregation energies of ks and kb is 
positive, but less than the activation energy for grain-boundary segregation ∆Hb. Indeed in 
[1], from the difference of the activation energies given by equations (IV.14) and (IV.15), 
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∆Hb = 29.4 kJ/mol was given, which is less than our result for the surface segregation 
energy [see equation (IV.16)]. In fact a numerical estimate for ∆H’  could be obtained 
either as the difference of the above energies or as the difference of the activation energies 
of ω’  and Palloy. Although the sign of ∆H’  is correct, since unfortunately the errors are too 
high in both cases, it is meaningless to give these numbers.  

IV.4 CONCLUSIONS 

Using the Hwang-Balluffi method, the ω’  = δkbDb/δsks products for Ag grain-boundary 
diffusion in nanocrystalline Cu films have been determined at low temperatures where 
lattice diffusion was vanishingly small and type -C regime was prevalent. From the 
comparison of these data with triple products (P = δkbDb), previously determined by tracer 
technique in B regime under different segregation conditions, the activation energy of the 
surface segregation factor ( ks) was determined (34  ± 19 kJ/mol), which is in a good 
agreement with surfa ce segregation energies of Ag in Cu(Ag) alloys published in the 
literature. These results as a whole show that there is no particular behaviour of the 
nanostructured substrate in relation to the grain-boundary material transport. 
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CONCLUSIONS 

The aim of this study was to investigate diffusion, segregation and dissolution in 
multilayers and thin films, which present two particularities against classical bulk 
materials: diffusion distances, which are not infinite compared to the size of the sample 
and a sharp interface. 

The first aspect of our work was to clarify the role of the ‘nano-effect’ on material 
transport. We have shown from simulations in multilayers A/B where the diffusion 
coefficients of A (B) atoms in B (A) are very different, wh ich leads strongly (exponential
concentration dependent diffusion coeff icients during the homogenisation, that large 
asymmetry is observed in the evolution of the concentration profiles. We have seen that in 
multilayers a fast homogenisation takes place o n the side where the diffusion is faster, and 
here the distribution is practically flat. Thus only the amplitude of the composition 
modulation decreases with time and the interface remains sharp and shifts. The Auger 
depth profili ng technique provided direct evidence for this in amorphous Si -Ge system. 

Furthermore, we found that there is a difference between the results obtained from the 
continuum and discrete models: the shape of the moving boundary changes with time in 
the discrete model and it shows a la yer-by layer dissolution kinetics, while in the 
continuum model the interface remains atomic sharp. Furthermore, the validity of the 
continuum model shifts as the function of the strength of the concentration dependence of 
the diffusion coeff icients, and i n many real multilayer systems with typical modulation 
length of few nanometers, it can break down. 

Investigating the combined effects of stress and non-linearity due to the concentration 
dependence of the diffusion coefficients, it was shown that in the Si-Ge system not only 
the concentration but also the pressure distribution is also very asymmetrical. Furthermore, 
stress effects do not modify the behaviour of the composition profile and the time 
evolution of the intensity curve; only its ‘slope’, which i s proportional to the diffusivity, 
has been changed. Consequently stress effects can slow down the homogenisation in 
multilayers. 

We have investigated the effect of segregation on the dissolution of a thin Ni layer (3-
14 eq-ML) into a semi-infinite Cu substrate. Our simulations indicated a step-wise 
character of dissolution and an interesting interference between the segregation and 
dissolution in accordance with the results obtained in multilayers. Because of the strong 
concentration dependence of the diff usion coefficients of the diffusing species, the 
interface remains sharp and shifts until i t reaches the nex-to-the-last layer. In this part of 
the dissolution a concentration dependent diffusion on discrete lattice controls the process. 
We have seen tha  the thickness of Ni decreases linearly with time, indicating the strong 
non-linearity, deviation from the continuum description and violation of the parabolic law. 
This was also experimentally confirmed from Auger measurements of dissolution of Ni 
into semi-infinite Cu substrate. In the final stage of the dissolution, due to the driving force 
for segregation, the process continues by the saturation of Cu in the top layer. The change 
of the concentration of the second layer (first underlayer) occurs accord ng to the 
segregation isotherm. Finally, after the saturation of the surface layer by Cu, the final 
homogenisation takes place by complete dissolution of the second layer.  

The second aspect of our study was to characterise the grain -boundary material 
transport in nanostructured thin films. Using the Hwang-Balluffi method and Auger 
electron spectroscopy, Ag grain-boundary diffusion in nanocrystalli ne Cu films have been 
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determined at low temperatures where lattice diffusion was vanishingly small and type -C 
regime was prevalent. From the comparison of these data with triple products, previously 
determined in polycrystalline samples by tracer technique in B regime, the activation 
energy of the surface segregation factor was also determined, which is in a good ag reement 
with surface segregation energies of Ag in Cu(Ag) bulk all oys published in the literature. 
These results as a whole suggest that there is no diff erence between nanostructured and 
bulk polycrystals from the point of view of grain-boundary material transport. 
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