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Feather corticosterone levels are not correlated with 
health or plumage coloration in juvenile house finches
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Stressful developmental conditions can have both short- and long-term effects on animal physiology and behaviour, 
but studies on this topic are rarely conducted in the wild and, if so, largely focus on only the first few weeks of life. 
To fill this gap, we tested developmental links between early-life stress and the physiology of wild-caught juveniles 
later during development. Specifically, we examined potential associations between feather corticosterone levels of 
hatchling house finches (Haemorhous mexicanus) and several phenotypic and physiological traits measured several 
months later in juveniles. We assessed four indices of health (oxidative damage to lipids, innate immunity, intestinal 
parasite infection intensity and plumage colour) and two morphological traits (body mass and tarsus length) in 
juveniles. Feather corticosterone content was not related to any of the juvenile traits later in development. Our 
results suggest that physiological variables can change rapidly during ontogeny, such that stress hormone levels in 
juvenile feathers could be uncoupled from the real stress levels experienced by nestlings. Instead, juvenile physiology 
might be more dependent on current environmental conditions than on early-life conditions (i.e. environmental 
matching), and this may limit the effects on fitness of poor early-developmental conditions.

ADDITIONAL KEYWORDS:  body size – carotenoid pigmentation – Haemorhous mexicanus – immunity – 
oxidative stress – parasitism – steroids.

INTRODUCTION

The conditions that individuals experience during 
early life can have effects on their growth, physiology 
and behaviour that can persist into adulthood 
(Roff, 1992; Mousseau & Fox, 1998; Metcalfe & 
Monaghan, 2001; Larcombe et  al., 2017). Many 
of these early-life experiences are stressful (e.g. 
parasite burden, sibling competition, food shortages), 
and these are often accompanied by an increased 
secretion of stress hormones released by the 

hypothalamic–pituitary–adrenal axis of the endocrine 
system (e.g. glucocorticoids; Harris & Seckl, 2011; 
Crespi et al., 2012). These stress hormones can affect 
short-term behaviour and physiology in developing 
animals (Blas, 2006; Grava et al., 2013) and can alter 
the organization of morphological, physiological, 
neurological and behavioural traits throughout life 
(Love & Williams, 2008; Spencer & MacDougall-
Shackleton, 2011; Farrell et al., 2015). For example, 
developmental stress has been suggested to increase 
oxidative stress and affect ageing in a wide variety 
of organisms, including mice (Gibson, Garratt & 
Brooks, 2015), fish (Kishi, 2014), snakes (Bronikowski 
& Vleck, 2010) and humans (de Rooij & Roseboom, 
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2013). In addition, elevated levels of stress hormones 
or exposure to environmental stressors during 
development can have short-term effects on growth 
and immune responses (Saino et al., 2003; Martin 
et al., 2005; Loiseau et al., 2008) and long-term effects 
on immunity (Berghänel et al., 2016; Danese & Lewis, 
2017) and parasite resistance (Devevey et al., 2010).

In recent years, birds have emerged as popular 
subjects for investigating how the early developmental 
environment shapes the phenotype, mainly because 
the distinct egg stage in their development allows for 
relative ease in separating pre-hatch vs. post-hatch 
effects (Crino & Breuner, 2015). Although it is relatively 
easy to measure levels of stress hormones from eggs 
(i.e. Hayward & Wingfield, 2004), studies on long-term 
effects of post-hatch developmental stress have lagged 
behind, mainly because measuring glucocorticoid levels 
during development in wild animals can be challenging 
because of the rapid nature of stress responses 
(Romero & Reed, 2005) and the possible confounding 
effect of handling stress (Romero & Romero, 2002; 
Hamalainen et al., 2014). A method for measuring 
levels of the stress hormone corticosterone (CORT) 
deposited in growing feathers was developed a decade 
ago to overcome this problem (Bortolotti et al., 2008). 
Corticosterone is deposited into feathers throughout 
feather growth and thus its levels in plumage reflecting 
individual differences in stress level and adrenocortical 
response (i.e. integrating baseline level, magnitude and 
time course of stress responses, and number/types of 
stressors experienced) over several weeks (Bortolotti 
et al., 2008; Lattin et al., 2011). Prior avian studies 
have shown that feather CORT levels respond to 
experimental manipulations of food availability (Will 
et al., 2014) and brood size (Lodjak et al., 2015). Most 
studies of feather CORT have been done on adult 
birds; therefore, more studies on juveniles are needed 
to understand the long-term effects of developmental 
stress (Martinez-Padilla et al., 2013).

Here, we collected feathers grown during the first few 
weeks of life from young male and female house finches 
(Haemorhous mexicanus Müller, 1776) during their 
first adult moult to study retrospectively the stress 
levels that these birds experienced during development, 
while assessing the physiological condition of the birds 
at this time (i.e. several months after hatching). We 
tested for relationships between feather CORT levels 
and four indices of current health state (oxidative 
damage to lipids, innate immunity, intestinal parasite 
infection intensity and plumage colour intensity) and 
two morphological traits (body mass and tarsus length).

As stressful conditions experienced during the first 
few weeks of life can have long-term negative effects 
on parasite resistance and immunity (Stjernman, 
Raberg & Nilsson, 2008; Kriengwatana et al., 2013), we 
predicted that birds with higher feather CORT levels 

would show decreased innate immunity and resistance 
to intestinal parasites. Developmental stress can also 
lead to accelerated ageing (Bronikowski & Vleck, 2010; 
Gibson et al., 2015); therefore, we predicted that birds 
with higher feather CORT levels would have more 
oxidative damage. If developmental stress levels affect 
condition during the first adult moult, we would expect 
associations between the ornamental colour of a bird’s 
first adult plumage and juvenile feather CORT levels, 
because sexual coloration is hypothesized to reflect 
individual quality (von Schantz et al., 1999; Garratt & 
Brooks, 2012). This association could be either positive 
(a recent study in house finches indicated that redder 
adult male house finches had higher levels of feather 
CORT; Lendvai et al., 2013) or negative (if higher stress 
levels interfere with feather pigmentation). Likewise, for 
morphological measurements (body mass, tarsus length 
and body condition), we could expect either positive 
or negative relationships with feather CORT levels, 
because elevated stress levels during development 
impair growth in some organisms (reviewed by Crino 
& Breuner, 2015), but accelerate growth in others 
(Coslovsky & Richner, 2011; Berghänel et al., 2016).

MATERIAL AND METHODS

Field methods

A full description of the methods is available as 
Supporting Information. From 13 to 20 September 2012, 
we used hanging basket traps and ground Potter traps 
baited with sunflower seeds (Giraudeau, Toomey & 
McGraw, 2012) to capture 74 moulting hatch-year house 
finches (37 females and 37 males) on the Arizona State 
University campus (Tempe, AZ, USA). At capture, birds 
were completing their first pre-basic plumage moult. 
Juvenile plumage was distinguished from basic female 
plumage by the broad buffy proximal edges of upper 
surfaces of secondaries, tertials and greater and median 
secondary coverts (Badyaev, Belloni & Hill, 2012). We 
determined body mass (to the nearest 0.1 g with a digital 
scale), tarsus length (to the nearest 0.1 mm with digital 
callipers) and body condition (calculated as mass/length 
residuals). We also collected 150 µL of whole blood from 
the alar vein with heparinized capillary tubes. Blood 
was centrifuged (10 000g for 3 min) and the plasma 
saved at −80 °C for later analysis of innate immunity 
and oxidative damage to lipids (see below). Source data 
are available as Supporting Information.

Measurement of feather corticosterone 
content

We collected the four outer wing covert feathers 
of the juvenile plumage to quantify corticosterone 
levels. The CORT content were measured using 
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radioimmunoassay (RIA), following the method 
described by Lendvai et al. (2013). The results were 
corrected by feather mass (as described by Lendvai 
et al., 2013), because the length of the covert feathers 
could be determined less reliably than their mass, and 
because the four feathers from the same individuals 
were pooled before extraction. Feather CORT corrected 
by feather mass was unrelated to sample mass. The 
intra-assay coefficient of variation was 4.27%.

Quantifying coccidian parasites

We assessed the coccidian infection intensity of each 
bird from faecal samples collected in the afternoon 
and evening (i.e. after 16:30  h), which is when 
coccidian oocysts are shed, via standard faecal-float 
and microscope-evaluation methods (Brawner, Hill & 
Sundermann, 2000; Giraudeau et al., 2014). Coccidians 
inhabit the gut lining of birds and are thought to 
disrupt nutrient uptake, thereby affecting the health 
and appearance of birds (Brawner et al., 2000; Pap 
et al., 2009). The coccidian oocyst load was estimated 
with a light microscope on an integer scale from zero 
to five, as follows: 0, no oocysts present; 1, 1–10 oocysts 
present; 2, 11–100 oocysts present; 3, 101–1000 oocysts 
present; 4, 1001–10 000 oocysts present; and 5, ≥ 10 000 
oocysts present.

Agglutination and lysis assay

We used the haemolysis–haemoglutination assay 
to assess the strength of innate immune responses. 
Agglutination of foreign red blood cells is a measure 
of the concentration of natural antibodies (produced 
before antigen exposure) that assist in foreign particle 
removal and complement-mediated lysis. Lysis assesses 
the ability of the plasma to destroy foreign cells by 
rupturing them (Matson, Ricklefs & Klasing, 2005). 
We followed the protocol developed by Matson et al. 
(2005), which was then modified by Moeller, Butler 
& DeNardo (2013) and Butler et al., (2013). Details of 
this method are available as Supporting Information. 
Two persons independently scored the plates blind to 
sample identity. We previously showed that their lysis 
and agglutination scores were highly repeatable for 
both agglutination and lysis (Davies et al., 2015).

Measurement of lipid peroxidation

Following the description by Giraudeau et al. (2014), 
we used a commercially available kit (Oxi-Tek TBARS 
assay kit; ZeptoMetrix Corp., Buffalo, NY, USA) to 
assess oxidative damage to lipids in the form of the 
concentration of malondialdehydes (MDA) from 
plasma. The thiobarbituric acid reactive substances 
(TBARS)-based colorimetric method is widely used 

in ecological studies because it is convenient, simple 
and low cost, but it is criticized for the inherent 
problems of data specificity (reactivity towards 
other compounds other than MDA) and variability 
(Halliwell & Gutteridge, 2007), suggesting caution 
in interpreting results obtained with this method. 
Details of this method are available as Supporting 
Information. Sample concentrations are expressed as 
nanomoles per millilitre of MDA equivalents. Higher 
values correspond to greater oxidative damage.

Carotenoid-based coloration

At capture, we digitally photographed each male 
to measure the expression of ornamental plumage 
coloration, following the methods published by 
Giraudeau et al. (2014). Using a Canon PowerShot 
SD1200S (Lake Success, NY, USA), we took two 
separate photographs of the breast of each bird against 
a neutral grey-board, using identical distance from 
camera to object, shutter, exposure and flash settings for 
each photograph. Digital images (JPEG, 3648 × 2736 
pixels) were imported into Adobe Photoshop (San Jose, 
CA, USA) to determine the plumage hue.

Statistics

All statistical analyses were carried out using 
Statistica software (StatSoft, Tulsa, OK, USA). We 
used separate analyses of covariance (ANCOVAs) 
to test for the effects of feather CORT, sex and their 
interation on the physiological and morphological 
traits measured. To eliminate the possible problem of 
collinearity, we tested whether feather CORT levels 
differed for sexes. This was not the case [mean for 
males 6.99 ± 0.73 (SE), mean for females 7.44 ± 0.68 
(SE), t-test P = 0.66, t = −0.44]. We log10-transformed 
the TBARS and hue data to normalize them. No 
transformation could normalize the coccidia and 
immunity data, so we ranked them (Conover & Iman, 
1981) before analyses. Given that CORT analyses 
were run on two plates, we included plate number as 
a cofactor in all analyses. This factor was significant 
for the hue model only, and was therefore removed 
together with the non-significant sex × feather CORT 
interaction from all other final analyses. Full models 
(Table S1) and source data (Table S2) are presented in 
Supplementary Material.

RESULTS

The mean SEM value for feather corticosterone 
was 7.23 ± 4.23 pg/mg, minimum 0.70 pg/mg and 
maximum 22.21 pg/mg. Feather corticosterone levels 
were not significantly correlated with any of the 
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variables measured (Table 1, Fig. 1). There were no 
intercorrelations between variables (all P > 0.1) except 
for agglutinations scores that were correlated with 
oxidative damage levels (F1,43 = 7.68, P = 0.0082) and 
lysis scores (F1,44 = 61.60, P = 10–6) and hue values 
that were correlated with coccidian levels (F1,28 = 5.74, 
P = 0.023) and oxidative damage levels (F1,33 = 4.17, 
P = 0.049). The only trait that was affected by the sex 
of the bird was body condition, which was lower for 
females (Table 1, Fig. 1).

DISCUSSION

Here, we examined possible relationships between 
CORT levels in juvenile feathers and morphological 
and physiological measurements several months 
after fledging in hatch-year house finches. Feather 
CORT content was not related to four indices of health 
(oxidative damage to lipids, innate immunity, intestinal 
parasite infection intensity and plumage color intensity) 
or to body mass, tarsus length or body condition.

Our negative results seem to suggest that house 
finches display a significant amount of developmental 
plasticity, growing out of the effects of varying 
stress hormone levels during the nestling period 
by the time they have moulted into their first adult 
plumage. Previous studies have shown that nestling 
feather CORT is related to condition when the latter 
is measured concurrently with CORT secretion in 
feathers. For example, strong associations between 
feather CORT and nestling body condition have been 
shown to exist in tree swallows (Tachycineta bicolor; 

Harms et al., 2010) and black kites (Milvus migrans; 
López-Jiménez et al., 2016) and between fledging 
success and feather CORT levels in northern flickers 
(Colaptes auratus; Gow & Wiebe, 2014) and tree 
swallows (Fairhurst et al., 2013).

Another possibility is that CORT levels might be 
uncoupled from the stress levels experienced by nestlings, 
so that the physiological condition of the birds would not 
be related to their feather CORT at the nestling age. For 
example, a recent study on European starlings (Sturnus 
vulgaris) showed that there was no difference in feather 
CORT between nestlings with unpredictable access to 
food and those with continuous access, indicating that 
feather CORT might not always detect ecologically 
relevant stressors in the nestling period (Fischer, Rao 
& Romero, 2017). Young birds may be limited in their 
abilities to perform many of the adult-like responses to 
overcome stressful situations and, as a consequence, an 
adult-like adrenocortical response to stress might expose 
chicks to chronic CORT elevations, with potentially 
deleterious consequences for development, without any 
rapid benefits in terms of survival (Sims & Holberton, 
2000; Kitaysky et al., 2003; Blas et al., 2006).

This lack of connection between condition and the 
level of stress responses could be mediated by, for 
example, plasma corticosteroid binding globulins, 
which can regulate the general availability of steroid 
to tissues (Malisch & Breuner, 2010), or the number of 
CORT receptors on the target cells (Lattin, Waldron-
Francis & Romero, 2013). Accordingly, some non-
precocial nestlings have been shown to display very 
low stress responses at the beginning of the nestling 
period, but the typical adrenocortical pattern of fully 

Table 1.  Results of ANCOVAs examining the effects of sex and feather corticosterone levels on various physiological and 
morphological variables

Dependent variable Factor d.f. F η2 P-value

Tarsus length fCORT 1,68 2.99 0.04 0.088
Sex 1,68 0.42 0.006 0.52

Body condition fCORT 1,68 0.004 <0.0001 0.95
Sex 1,68 10.26 0.13 0.002*

Oxidative damage (TBARS) fCORT 1,66 3.43 0.007 0.07
Sex 1,66 3.4 0.002 0.07

Immunity (agglutination) fCORT 1,42 0.24 0.005 0.63
Sex 1,42 0.68 0.01 0.41

Immunity (lysis) fCORT 1,44 0.00008 0.0002 0.99
Sex 1,44 3.22 0.09 0.08

Coccidia infection fCORT 1,56 0.15 0.01 0.7
Sex 1,56 0.12 0.0006 0.91

Colour (hue) fCORT 1,32 0.02 0.0006 0.89
Assay number 1,32 6.13 0.16 0.019*

Abbreviations: fCORT: feather corticosterone; TBARS, thiobarbituric acid reactive substances. η2 denotes effect sizes in the models. *Statistically 
significant values.
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developed birds near fledging (Magellanic penguin, 
Spheniscus magellanicus, Walker, Wingfield & 
Boersma, 2005; white storks, Ciconia ciconia, Blas 
et al., 2006; American kestrel, Falco sparverius, Love 
& Williams, 2008).

Given that we measured only birds that had reached 
the fledgling phase, selective dissappearance of birds 
experiencing high levels of stress (and, as a result, a 
lower health state) during the nestling period cannot 
be ruled out. Additional data on feather corticosterone 
levels and survival until the juvenile stage are 
necessary to gain a full understanding of the ecological 
meaning of juvenile feather corticosterone levels.

In conclusion, we found that natural variation 
in feather CORT levels during development were 
uncoupled from physiological and morphological 
parameters measured several months later in life. 
This is one of the first studies to test the impact of 
developmental stress on the physiology later in life 
in wild animals in their natural environment. We 
propose the following hypotheses to explain these 
negative results: (1) birds in our study population 
might display high levels of developmental plasticity 
and, as they approach maturation, their physiological 
condition might be uncoupled from the levels of stress 
experienced during the nestling period; (2) stress 
hormone levels in nestlings might be uncoupled 
from the stress levels that the nestlings experience; 
and (3) natural conditions allow environmental 
matching that might limit the effects on fitness of 
poor developmental conditions. Future studies on the 
associations between nestling feather corticosterone 
levels, reproductive success, behaviour and lifespan 
in wild animals might considerably add to our 

knowledge about the lifetime effects of developmental 
stress.
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Table S1. Results of ANCOVAs examining the effects of sex and feather corticosterone levels on various  
physiological and morphological variables. η2 denotes effect sizes in the models.
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