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The development of propagating patterns arising from the di†erential Ñow of reactants through a tubular
reactor is investigated. The results from a series of experimental runs, using the BZ reaction, are presented to
show how the wavelength and propagation speed of the patterns depend on the imposed Ñow velocity and the
concentration of in the inÑow. A model for this system, based on a two-variable Oregonator model forBrO3~
the BZ reaction, is considered. A stability analysis of the model indicates that the mechanism for pattern
formation is through a convective instability. Numerical simulations conÐrm the existence of propagating
patterns and are in reasonable agreement with the experimental observations.

1 Introduction
An important feature of spatially distributed chemical systems
is their ability to support spatio-temporal structures. The orig-
inal idea for structure generation, proposed by Turing,1 is
that, if the di†usion coefficients of the reacting species in a
system with feedback kinetics are sufficiently di†erent, this can
destabilize the spatially uniform steady state to produce
steady waves (or patterns) in the reactant concentrations. This
basic idea has been tested theoretically on a series of proto-
type model schemes, though it is only relatively recently that
Turing patterns have been observed experimentally.2h4 The
realization that spatial structures could be generated experi-
mentally in chemical systems provided a strong impetus to the
development of new reactors for observing such phenomena,
see ref. 5 for a recent review.

One recent development is the di†erential-Ñow reactor,
devised originally by Rovinsky and Menzinger.6h9 The basic
idea behind this reactor is that the reacting species Ñow
through it at di†erent rates. This di†erential transport can ini-
tiate instabilities in the basic state leading to propagating
wave packets of reactant concentrations, moving in the direc-
tion of the Ñow. In the original experiments, and in the ones
described below, the BZ system is used with the di†erential
Ñow being produced by immobilizing the ferroin on cation-
exchange beads while the other reactants Ñow through the
reactor at a rate controlled by an applied pressure di†erence.

The convective nature of this instability, termed the
di†erential-Ñow induced chemical instability or DIFICI, was
recognised in computer simulations9 and in theoretical studies
using Brusselator10 and GrayÈScott11,12 kinetics. These theo-
retical studies have been extended to include cases where all
the reactants Ñow (or migrate), though at di†erent rates,
through the reactor.13,14 This additional e†ect arises from the
application of a (constant) electric Ðeld, under which ionic
species migrate at a rate proportional to their di†usion coeffi-
cient. In these cases, interactions of DIFICI with Turing and
Hopf bifurcations are possible, resulting in a wide range of
complex spatio-temporal behaviour including the possibility
of spatio-temporal chaos.

Here we reconsider the DIFICI experiments with a view to
obtaining a more quantitative description of the underlying

mechanism. To this end we have performed a series of experi-
mental runs for di†erent Ñow rates and for di†erent bromate
concentrations in the feed. In each case, the propagation
velocity and wavelength of the resulting patterns were mea-
sured and their dependence on the Ñow velocity established.
We have also considered a model for the system based on a
two-variable Oregonator scheme for the BZ reaction. A stabil-
ity analysis of this model predicts parameter ranges where the
convective instability driving the DIFICI can be found. This
information was then used to determine parameter values
suitable for numerical simulations. These show the develop-
ment of a series of propagating wave forms arising from a
single initial perturbation to the basic state. Our theoretical
considerations reveal that these propagating waves originate
from a somewhat di†erent mechanism to the patterns (steady
and propagating) seen in other types of Ñow reactors.15

The theory is derived in terms of the Ñow velocity of reac-
tants within the reactor. To be able to use the results from our
model to interpret the experimental Ðndings, this velocity
needs to be determined from the measured Ñow rates used in
the experiments. This requires further calculations to estimate
the packing density and void fraction of the cation-exchange
beads in the tubular reactor. This aspect has not been
addressed before for this particular set up.

2 Experiments

2.1 Experimental setup

The experiments were run in a tubular reactor (Fig. 1) similar
to that developed by Rovinsky and Menzinger.6,7 The tube
was packed with DOWEX 50] 4È400 cation-exchange resin
on which ferroin was immobilized. Before loading with
ferroin, the ion exchanger was washed 5È7 times with distilled
water. Each time, after the main part of the beads had settled,
the liquid fraction was decanted ; the remaining suspension of
the resin in water was then transferred into a measuring cylin-
der. When the beads had settled in the measuring cylinder, the
volume they occupied was determined. This volume (note that
this is still a suspension) was chosen as the reference value for
the loading with ferroin. The concentration of ferroin on the
resin calculated in this way was 1] 10~3 M. However,
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Fig. 1 Schematic representation of the experimental apparatus. The
internal diameter and length of the tube are 5.0 mm and 29 cm respec-
tively. GF is a G3 glass frit, S is a stopcock, P indicates the imposed
pressure of nitrogen used to drive the Ñuid Ñow. This pressure is con-
trolled by a standard gas regulator. (Figure adapted from ref. 7.)

assuming that the free volume occupied by the Ñowing solu-
tion is about a third of the total volume (see later) the ferroin
concentration in the free solution is 3 ] 10~3 M. The loaded
beads were mixed with some water and transferred to the
tubular reactor by applying a small excess of pressure. The
beads needed 3È4 h to settle in the tube then catalyst-free BZ
solution was poured into the top reservoir of the reactor. The
concentrations in the reacting BZ mixture were :
[BrMA]\ 0.4 mol dm~3, mol dm~3[H2SO4]\ 0.02] 0.4
from the stock solution of bromomalonic acid (BrMA),

was varied in the experiments (0.6, 0.8 and 0.95 mol[BrO3~]
dm~3).

Stock solution of bromomalonic acid. 0.4 mol dm~3 stock
solution of BrMA was prepared according to the recipe given
by Zaikin and Zhabotinsky.16 10.41 g of malonic acid was
dissolved in a mixture of 33.3 cm3 of 2 mol dm~3 NaBr solu-
tion, 25 cm3 of 4 mol dm~3 solution and 20.87 cm3H2SO4distilled water in a three-neck Ñask supplemented by a ther-
mometer, a reÑux condenser and a dropper funnel. The
mixture was stirred with a magnetic stirrer and cooled to
10 ¡C with ice from outside the Ñask. With the temperature
carefully maintained at 10 ¡C, 20.83 cm3 of 1.6 mol dm~3

solution was added to the mixture drop by dropNaBrO3from the funnel. Because of the reaction between acidic
bromate and bromide ions the mixture turns to yellow at each
drop, hence time was allowed for the colour to disappear
before the next drop was added. This ensures a slow bromina-
tion process without losing bromine to the gas phase.

Generating wave patterns. The volumetric Ñow rate of the
BZ mixture inside the tubular reactor Q was controlled by
applying compressed nitrogen gas, Q was assumed pro-
portional to the gas pressure. The value of Q was checked
frequently by measuring the time for collecting 5.0 ml solution
at the bottom of the tube. The experiment was started when
the Ñow rate became stabilized. In the absence of Ñow, the
beads in the tube were red (reduced state) without deÐnite

pattern formation indicating that the e†ect of gravity is negli-
gible. When gas pressure was applied, pale blue (oxidation)
waves appeared and propagated down the tube.

Measurements of wave velocity. The wave patterns were
recorded on videotape and the images processed on a PC.
ImageJ and Optimas programs were used to determine the
velocity of the DIFICI waves, by measuring the time acw ,
wave had travelled a known distance down the tube. The
wavelength, j, was determined by measuring the distance
between the fronts of two consecutive waves.

The velocity of the waves was measured as a function of the
applied gas pressure. Since there is a slight variation in the
packing density of the resin in the tube and the velocity of the
waves varied within a small range even at the same gas pres-
sure, there is a need to convert the applied pressure to the
actual Ñow velocity inside the tube. This involved the mea-cfsurement of the volumetric Ñow rate.

Calibration. The Ñow velocity is deÐned by

cf\
Q
A

(1)

where A is the “ free surface area Ï within the tube. The free
surface area can be calculated from

A\
V0
L

(2)

where is the “ free volumeÏ within the tube and L is itsV0length. The free volume is deÐned as

V0\ V [ Vb \ pr2L [ Vb (3)

where V is the total volume of the tube, is the volumeVboccupied by the beads and r is the radius of the tube.
The free volume was determined experimentally in two

ways. (1) A known volume of water was placed in a measuring
cylinder and a known amount of the dry resin added to it. The
change in total volume was recorded. The free volume is then
the di†erence between the volume the settled resin occupied
and the measured change in volume. (2) The unloaded resin
was mixed with some water and the suspension was trans-
ferred to the tubular reactor. The water in the reservoir was
drained o† until level with the top of the resin. A 0.1 mol
dm~3 solution of NaBr was then carefully put into the
reservoir. A Petri dish containing 10 cm3 of 0.1 mol dm~3

solution was placed under the tube. After opening theAgNO3stopcock and applying some extra pressure, the volume
change until the Ðrst drop of brown precipitate appeared in
the solution was measured. With both methods, theAgNO3free volume was found to be about 31È34% of the total
volume.

2.2 Results

Examples of DIFICI waves are illustrated in Fig. 2. Successive
images, taken at 2.8 s intervals, are shown from left to right
for a 7.7 cm section of the tube. Blue oxidation waves are seen
propagating downward through this section with a velocity

cm s~1 and with a mean wavelength of 2.1 cm.cw \ 0.167
Note that the acidity was increased for this particular experi-
ment to enhance the colour contrast. A lower concentration
was used for the experiments reported in later Ðgures. The
dark areas at the top of the Ðeld of vision correspond to more
densely-packed sections of the tube.

The variation of the experimentally-observed wave velocity
is shown in Fig. 3. This diagram is distinguished from that in
previous work6 as the wave velocity is plotted against the
actual Ñow velocity of the Ñuid along the DIFICI reactorcfrather than as a function of the driving pressure. The response
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Fig. 2 Experimental images of DIFICI waves at cm s~1.cf\ 0.138
Successive images, taken at 2.8 s intervals, are shown from left to right
for a 7.7 cm section of the tube. Blue oxidation waves are seen propa-
gating downward through this section with a velocity cmcw \ 0.167
s~1 and with a mean wavelength of 2.1 cm.

is linear, with the gradient of the Ðtted straight line varying
most weakly with the bromate ion concentrationÈlinear
regression gave the following gradients : 1.04 (^0.05), 0.90
(^0.08) and 0.83 (^0.12) for 0.8 and 0.95 M[BrO3~]0 \ 0.6,
respectively. The intercepts could not be resolved from the
uncertainty sufficiently to determine any trend, although in
general terms, the higher the bromate ion concentration, the
lower the wave speed for a given Ñow velocity. In the absence
of Ñow, no pattern was observed : we were unable to deter-
mine any ““critical ÏÏ Ñow velocity experimentally as patterns
were observed even for the lowest non-zero Ñow (approx-
imately 0.03 cm s~1) attainable.

The wavelength j of the DIFICI wave was measured in our
experiments and is typically of the order of a few centimetres.
Small variations in the distance separating oxidation fronts
were observed in a particular experimental run. The mean
wavelength j was calculated by averaging over a sequence of
waves. The variation of j with the Ñow velocity for di†erent

Fig. 3 Velocity of the DIFICI waves plotted against Ñow velocitycw0.8 0.95 mol dm~3.cf ; [BrO3~]\ 0.6 (>), (=), (…)

Fig. 4 Wavelength j plotted against the Ñow velocity Concentra-cf .tions of are as in Fig. 2.[BrO3~]

bromate concentrations was determined and is shown in Fig.
4. Again, a reasonable linear relationship is observed. A sys-
tematic trend in the gradient in terms of the bromate ion con-
centration emerges, with the gradient g increasing as the
concentration decreases : g \ 15.9 (^0.8), 22.8 (^2.0) and 47.3
(^4.7) s for 0.8 and 0.6 M respectively. A[BrO3~]0\ 0.95,
logÈlog plot for the three data sets suggests that the gradient
is proportional to The intercepts in Fig. 4[BrO3~]0~2.4(B0.1).
are not statistically signiÐcantly di†erent from zero.

3 Model
The analysis and numerical simulations are based on the

model17 of the BZ reaction through aFieldÈK°ro� sÈNoyes
spatially varying, two-species Oregonator model,18 in which
the reactants considered are and (theX4HBrO2 Z4 Moxoxidized form of the catalyst). This model can be represented
schematically as (see ref. 19, for example)

A] Y] X] P; rate \ k3[A][Y]

X] Y] 2P; rate \ k2[X][Y]

A] X] 2X] 2Z; rate \ k5[A][X]

2X] A] P; rate \ k4[X]2

B] Z] 12 f Y; rate \ kc[B][Z] (4)

and B (all the oxidizable organic species) areA4BrO3~assumed to have constant concentrations throughout,
P4 HOBr is a product of the reaction and Y4 Br~ is taken
to be in the quasi-steady state, so that

[Y]\
12 f kc[B][Z]

k3[A] ] k2[X]
(5)

The model is augmented to include a convective term to rep-
resent the Ñow of at a constant velocity through theHBrO2 cfreactor ; is assumed to be immobile. This leads, using theMoxstandard TysonÈFife scalings,20h22 to the dimensionless equa-
tions for our model as

e
du
dt

\
d2u
dx2

[ /
du
dx

] u(1 [ u) [
fw(u [ q)

(u ] q)
(6)

dw
dt

\ u [ w (7)

on 0 \ x \ O, t [ 0, where x and t are dimensionless space
and time variables and where u and w are the (dimensionless)
concentrations of X and Z respectively, with(HBrO2) (Mox)

[X]\
k5[A]

2k4
u, [Z]\

(k5[A])2
kc k4[B]

w

Phys. Chem. Chem. Phys., 2001, 3, 957È964 959



f is the stoichiometric factor, and

e \
kc B
k5 A

and q \
2k3 k4
k2 k5

are the usual parameters for the Oregonator model (see ref.
19, for example). / is the dimensionless Ñow velocity, related
to its dimensional value bycf

cf \ (Dk5A)1@2/ (8)

where D is the di†usion coefficient for Note that eqn.HBrO2 .
(6) and (7) have been rendered dimensionless using (D/k5 A)1@2
and as length and time scales respectively.(kc B)~1

Initially the system (6) and (7) is at the stable, spatially
uniform steady state, with

u \ w\ us\ 12(1[ ( f] q)] J(1[ f[ q)2] 4q(1] f )) (9)

for all x. For the numerical simulations zero-Ñux boundary
conditions are applied at x \ 0 (inlet) as well as at large dis-
tances along the reactor (formally as x ] O).

We consider a situation for which, in the absence of Ñow
(and di†usion), the steady state is stable to small pertur-
bations. We then wish to determine the conditions under
which the di†erential Ñow, represented by the Ñow parameter
/, can lead to instabilities arising from these small pertur-
bations. To do so we consider a linear stability analysis.

3.1 Linear stability analysis

We linearize eqn. (6) and (7) about the steady state, eqn. (9),
writing

u \ us] U, w\ us] W , U, W small

with eqn. (6) and (7) becoming

e
dU
dt

\
d2U
dx2

[ /
dU
dx

] aU [ bW

dW
dt

\ U [ W (10)

where

a \ 1 [ 2us [
2q fus

(us ] q)2
, b \

f (us [ q)

(us ] q)
(11)

Note that b [ 0 for all reasonable values of the model param-
eters. For our theoretical discussion it is convenient to extend
the spatial domain to [O \ x \ O and to assume that a
single perturbation, localized to x \ 0, is made at t \ 0.

Our basic assumption about the stability of the system in
the absence of Ñow (and di†usion) requires

Tr \ a [ e \ 0, D\ b [ a [ 0 (12)

We look for a solution of the linear eqn. (10) in terms of
Fourier transforms, namely

(U, W )\
1

2p

P
~=

=
(U1 0(k), W1 0(k))exp(u(k)t ] ikx) dk (13)

where u satisÐes the dispersion relation

eu2] (k2] i/k [ Tr)u] D] (k2] i/k)\ 0 (14)

and D are given by eqn. (12). and are the FourierTr U1 0 W1 0transforms of the initial (small) perturbation and, for pertur-
bations with compact support, are analytic functions in the
complex k-plane. Eqn. (14) shows that di†usion alone cannot
destabilise the system, for, with /\ 0 and conditions (12)
satisÐed, Re(u)\ 0 for all wavenumbers k. This may not be
the case when /[ 0 and to investigate this possibility we Ðrst
obtain the neutral curve, i.e., the curve in the /Èk2 parameter
space on which Re(u)\ 0. From dispersion relation (14) we

Ðnd that this is given by

/2\
(D] k2)(k2 [ Tr)2

k2(a [ k2)
(15)

Expression (15) needs the extra condition that a [ 0, with eqn.
(15) then deÐned on 0\ k2\ a. The neutral curves, as given
by eqn. (15), have vertical asymptotes at k2\ 0 and k2\ a,
and are positive on 0 \ k2\ a. It is easily shown that they
have a single local minimum on this range, with a typical case
being shown in Fig. 5. The main point to note from eqn. (15),
illustrated by Fig. 5, is that there is a minimum value for/min/ (where such that, when there is a range/min[ 0) /[ /min ,
of wavenumbers k over which Re(u) [ 0. Hence the system is
unstable to general small perturbations for all /[ /min .

To determine the nature of this instability, we need to
obtain the asymptotic behaviour of the Fourier integrals (13)
for t large and x Ðxed. We use the method of steepest
descent23 which shows that the dominant terms arise from the
saddle-point in the complex k-plane [where (du/(ks , us)dk) \ 0]. This is given by, from eqn. (14), andks \ [(i//2)
then

eus2 ]
A/2

4
[ Tr

B
us ]

A
D]

/2
4

B
\ 0 (16)

From eqn. (16), for all / when conditions (12)Re(us) \ 0
apply and hence any perturbation will die away for t large and
x Ðxed. However, the fact that, for there is a range/[ /min ,
of wavenumbers over which Re(u) [ 0 implies that the system
is convectively unstable, following the general treatment
(based on CGL equations) given by Deissler.24,25 This means
that there is a moving reference frame in which any (small)
perturbation will grow (equilibration at Ðnite amplitude
through nonlinear e†ects may be expected). Thus we expect
that any small perturbation will grow to produce a Ðnite dis-
turbance to the system. This will propagate through the
system which will then return to its original spatially uniform
state.

Hence, we have determined the conditions for convective
instability as, using eqn. (11) and (12),

0 \ a \ e, /[ /min (17)

From eqn. (11), a depends only on q and f (and not on e) and a
typical plot of a against f is shown in Fig. 6a (here for
q \ 0.002). The graph crosses the axis at two points andfC1one when the system is in the oxidized state, and onefC2

, fC1
,

when it is in its reduced state, in this examplefC2
, fC1

\ 0.5061,
The line a \ e (where the spatially uniformfC2

\ 2.3943.
system undergoes a Hopf bifurcation) is parallel to the axis

Fig. 5 A typical neutral curve eqn. (15), the curve in the /Èk2 param-
eter plane on which Re(u)\ 0 (u given by the dispersion relation eqn.
(14)). The parameter values used for this Ðgure are q \ 0.002, e \ 0.05,
f\ 2.35 (a \ 0.025 79) and has /min \ 2.6670.
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Fig. 6 (a) A graph of a against f for q \ 0.002. The points, labelled
where the graph crosses the axis show the onset of convectivefC ,

instability. (b) The region where the system is convectively unstable
(labelled CU) between where the curve crosses the axis and the line
a \ e.

and cuts the curve at two points, and (for e \ 0.05 thesefH1
fH2are at and It is in the range of ffH1

\ 0.5317 fH2
\ 2.3087).

between and (i\ 1, 2) that the system is convectivelyfCi
fHiunstable, provided This is illustrated in Fig. 6b for/[ /min .

the system in its reduced state, the region of possible convec-
tive instability is labelled CU in the Ðgure.

There are two features to note especially about Fig. 6a.
First, it predicts that convective instabilities can occur in both
the reduced state (larger f and lower values of and the oxi-us)dized state (lower f and higher values of Perhaps moreus).importantly, it predicts that there is only a relatively narrow
“windowÏ, just beyond where oscillations will be seen in the
batch system, where convective instabilities can occur. This
“windowÏ decreases as e decreases (i.e. the system becomes
more excitable). Thus, for Ðxed values of the other parameters,
as f is increased (for the reduced state) from its Hopf bifur-
cation value (at a \ e) to (at a \ 0) the system canfH f\ fCsustain convective instabilities for Ñow velocities above the
critical Note that depends on all the kinetic param-/min . /mineters. For the system is stable for all /. A graph of thef[ fCcorresponding values of is shown in Fig. 7 (for q \ 0.002,/mine \ 0.05). Note that as and as/min] 0 f] fH /min] O f ] fC ,
as expected from eqn. (15).

For f[ 1 approximate expressions for and can befC fHobtained by exploiting the result that forus ^ q( f ] 1)/( f [ 1)
This givesq @ 1.26

fC\ J2 ] 1 ] O(q),

fH \ (1[ e)] J2 [ 2e ] e2 ] O(q)

^ (J2 ] 1)[ e
A
1 ]

J2

2

B
(18)

for q (and e) small.

plotted against f for the reduced state (q \ 0.002,Fig. 7 /mine \ 0.05).

3.2 Numerical simulations

Eqn. (6) and (7) were solved numerically using a standard
implicit algorithm, based on the CrankÈNicolson scheme, for
integrating parabolic systems. NewtonÈRaphson iteration was
used to solve the sets of nonlinear Ðnite-di†erence equations
which arise at each time step. The spatial domain consisted of
12 000 grid points with a mesh size *x \ 0.1 being used. An
adjustable time-step procedure was used to maintain overall
accuracy, typically *t \ 0.016. The integrations were started
with the system in its spatially uniform conÐguration per-
turbed initially by increasing slightly the value of u over the
Ðrst 10 grid points. No further perturbations were made
during the course of the integrations and zero-Ñux boundary
conditions were applied at both ends of the computational
domain.

To illustrate the development of convective instabilities we
took e \ 0.05, q \ 0.002 and f \ 2.32, for these parameter
values Results for /\ 1.5 are shown in Fig. 8./min\ 0.822.
In Fig. 8a and b we give proÐle plots of u and w, the dimen-
sionless concentrations of and respectively, and inHBrO2 MoxFig. 8c we plot the position of the “pulses Ï in u thatxfdevelop ; in this Ðgure the lines represent the position of the
front of the pulse (where u Ðrst takes the value u \ 0.1).

The perturbation applied at t \ 0 generates an initial wave,
this would be seen without the Ñow though its speed c is
higher (c\ 60.8 for /\ 1.5 whereas c\ 29.9 when /\ 0).
This Ðrst wave propagates through the system and, when this
has recovered sufficiently, a second wave develops. This starts
downstream of where the initial perturbation was applied
(second wave in Fig. 8c). Fig. 8a(i) and b(i) (t \ 7.98) are
plotted when the second wave has just formed. There is evi-
dence of a further small perturbation behind this second wave.
This dies out in the refractory tail of the second wave as it
propagates. The w proÐle has a pulse-like form in Fig. 8b(i).
This spreads to a proÐle similar to the Ðrst wave through the
rear part remaining Ðxed and the front part propagating for-
wards. Initially the second wave has a slightly higher speed
than the Ðrst wave.

By t \ 16.39 (Fig. 8a(ii) and b(ii)) the second wave has pro-
pagated further along the computational domain and a third
wave has just formed, downstream of where the second wave
was initiated. A further small perturbation can be seen at the
rear of the third wave as it develops. This grows to form a
fourth wave (Fig. 8a(iii) and b(iii), t \ 17.35). The third wave
then propagates forwards, initially with a speed slightly higher
than the Ðrst two waves. The fourth wave forms close behind
the third wave and moves only slowly to start with. The e†ect
of the refractory tail of the third wave is to reduce the ampli-
tude of the fourth wave from its initial development and, as
the two waves become more separated, this grows again to
form a fully developed wave. The speed of the fourth wave
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Fig. 8 ProÐle plots of (a) u and (b) w, the dimensionless concentra-
tions of and at t \ 7.98, 16.39, 17.35, 26.81 to show theHBrO2 Moxdevelopment of a convective instability. (c) the position of thexf“pulses Ï in u. The parameter values are e \ 0.05, q \ 0.002, f\ 2.32,
/\ 1.5.

increases as it becomes more separated from the third wave
and a wave train is set up.

The next event is for a Ðfth wave to form after the fourth
wave has propagated sufficiently far downstream. This is
shown in Fig. 8a(iv) and b(iv) (t \ 26.81) where the Ðfth wave
has just formed. There is a perturbation behind this Ðfth wave
but, unlike the previous case, this does not produce a wave
and dies out as the Ðfth wave propagates. The speed of this
Ðfth wave is comparable to speeds of the second and third

Fig. 9 The u and w time traces, plotted at x \ 1000, to show the
nature of the convective instability, arising from the single initial per-
turbation at x \ 0, propagating through the system. The parameter
values are e \ 0.05, q \ 0.002, f\ 2.32, /\ 1.5.

waves. After the Ðfth wave has propagated a distance and the
system has recovered sufficiently, another wave, the sixth, is
generated in a manner analogous to the formation of the
second wave (see Fig. 8c). This is initiated further downstream
than where the Ðfth wave formed. After the sixth wave has
developed, another pair of waves (seventh and eighth) are
formed in a way analogous to the third and fourth waves (Fig.
8c). These are initiated still further downstream than the pre-
vious waves. As t increases further wave formation appears
(Fig. 8c) with a total of 11 waves being seen in this computa-
tion, though the Ðnal pair of waves develop close to the end of
the computational domain. No further wave formation was
seen in this computation, though we can expect the scenario
reported above to continue beyond the limits of our computa-
tional domain.

An important feature to note about this sequence of wave
formation is that each successive wave is initiated further
downstream than the previous ones (as can clearly be seen in
Fig. 8c). The system then progressively returns to its original
steady state as the wave pattern propagates(u \ w\ us)downstream. We illustrate this point by giving time traces of u
and w at a given station. These are shown in Fig. 9 at
x \ 1000. This Ðgure clearly shows that a considerable time
elapses before the e†ect of the initial perturbation is felt. The
system then undergoes several excursions from its initial state
before returning to (and remaining at) this state. One Ðnal
point to note is that, without a Ñow or with only a/\ /min ,
wave equivalent to the Ðrst wave shown in Fig. 8 is formed, no
other wave development is seen.

4 Discussion
Our experiments have shown that a di†erential Ñow of reac-
tants through a tubular reactor can lead to an instability in
the basic state and to the propagating patterns reported pre-
viously.6,7 This shows the reproducibility of this instability
phenomenon. We have extended the previous studies by deter-
mining how the propagation speed and wavelength of the
resulting patterns depends on the concentration of inBrO3~the feed and the Ñow velocity of the reactants. Further cali-
bration of the reactor was required to determine this Ñow
velocity in terms of the measured volumetric Ñow rate and the
particle packing density.
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We also considered a model for the reactor based on two-
variable Oregonator kinetics for the BZ reaction. The results
from our model show clearly the convective nature of the
DIFICI instability, whereby an initial disturbance sets up a
wave train that propagates through the reactor. Although the
two-variable Oregonator kinetics that we use in the model are
a very good paradigm for excitable systems, they have some
deÐciencies for direct quantitative comparison with experi-
ments using the BZ reaction. However, we can try to obtain
some estimates for the relation between model and experi-
ments. To do so we need values for for which we takek5 ,

M~2 s~1,19 D and the concentration of H`. Thek5\ 42
experiments were performed with [H`]^ 0.4 M and for D we
take D\ 2 ] 10~5 cm2 s~1. This latter value is appropriate
for molecular di†usion, though in the model an “e†ective Ï dif-
fusion coefficient, which reÑects the fact that the reactor can
be thought of as a porous material, may be more realistic.
With these values, and taking the mid value for [A]\ 0.8 M,
we obtain the factors

A D
k5A[H`]

B1@2
\ 1.2] 10~3 cm,

(Dk5A[H`])1@2\ 1.6] 10~2 cm s~1 (19)

for conversion between the dimensionless variables used in the
model and their respective experimental values.

The parameter values used in the numerical simulations
(Fig. 8 and 9) give which, from eqn. (19), corre-/min\ 0.822
sponds to a critical velocity of cm s~1 forcf, crit^ 1.3 ] 10~2
the onset of pattern formation. If we take this as typical for
the critical velocity, then it would be virtually impossible
experimentally to distinguish between these velocities and no
Ñow. This provides an explanation as to why no “onset Ï e†ect
was seen in the experiments. The value of / used for Fig. 8
and 9 gives a velocity cm s~1, which corresponds tocf ^ 0.024
the lower end of the results presented in Fig. 3 and 4. The
waves seen in the numerical simulation have a typical wave-
length of 350 dimensionless units, corresponding, through eqn.
(19), to j ^ 0.42 cm, which is consistent with this value of incfFig. 4. To compare wave speeds we really need to take the
value ec^ 3.0 from theory, giving cm s~1, which iscw ^ 0.05
in reasonable agreement with the results shown in Fig. 3.

For “excitability Ï in Oregonator kinetics the parameter e
should be small. In this case the model identiÐes that there is
only a relatively narrow “windowÏ of parameter space where
the convective instabilities can arise, suggesting that some care
may be needed in setting up the experimental conditions for
their realization. Our calculations reveal, however, that this
“windowÏ could be increased considerably if operating condi-
tions are arranged so that e is made larger, say by lowering
the acidity. This is illustrated in Fig. 10a where we show the
region of convective instability, labelled CU in the Ðgure, in
the eÈf parameter plane. (Here for q \ 0.002, though the
region is insensitive to the choice of q provided it is small.)
The Ðgure also shows the region where the system is absolu-
tely unstable (AU). This corresponds to oscillatory responses
in the batch system and gives a continuous propagating wave
train in the present model. Outside these regions the system is
stable for all Ñow rates. The e†ect of increasing e (for given
values of f and q) is to increase the critical Ñow rate for/minthe onset of DIFICI waves. This is illustrated in Fig. 10b,
where we plot against e (for f\ 2.32). Except for very/minsmall values of e, increases linearly with e. In general,/minincreases with increasing f and e within the convective/mininstability boundary. This suggests that operating the reactor
under less “excitable Ï conditions could require a sufficiently
large critical Ñow rate for DIFICI waves that may be
observed experimentally.

The general conclusions from the above are that the results
from our model are in, at least, qualitative agreement with the

Fig. 10 (a) A plot in the eÈf parameter plane showing the region of
convective instability (CU) and absolute instability (AU) (for
q \ 0.002). (b) plotted against e for f\ 2.32, q \ 0.002./min

experiments and can play a useful role in predicting possible
behaviour. However, there is one feature of the model that is
di†erent to what is observed. Namely, the numerical simula-
tions show each wave in the wave train starting progressively
further downstream. This is not seen in the experiments, where
the propagating wave patterns appear to Ðll the whole length
of the reactor throughout a particular run. There could be
several reasons for this. The numerical computations are for a
relatively short reactor of length approximately 14 cm (using
eqn. (19)) as compared to the 30 cm used and so these rep-
resent only the Ðrst part of the reactor. Perhaps more impor-
tantly, only a single perturbation was applied as the initial
condition in the numerical simulations, whereas in the experi-
ments there will be slight perturbations to the operating con-
ditions (e.g. inÑow rates) throughout. Previous general work
on convective instabilities24 and for chemical systems27 shows
that convective instabilities can considerably enhance any
slight time-dependent inlet perturbations, thus producing a
continuous generation of waves. These then appear along the
whole length of the reactor for that run.
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