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The conditions under which chemical patterns corresponding to ““Ñow-distributed oscillations ÏÏ are formed are
determined analytically for the Oregonator model of the BelousovÈZhabotinsky reaction. These analytical
results are conÐrmed by numerical computation and are also used to predict typical values for the critical Ñow
velocity and how the wavelength varies with the concentrations of the major reactants.

1. Introduction
The concept of chemical pattern formation through ““Ñow-
distributed oscillations ÏÏ (FDO) was proposed recently by
Kuznetsov et al.1 and demonstrated through an analysis of
the Brusselator model by Andresen et al.2 Subsequently,
Kaern and Menzinger3 have realised such patterns experimen-
tally using the BelousovÈZhabotinsky (BZ) reaction and
shown general agreement between experiment and a limited
set of numerical computations based on the ZhabotinskyÈ
Rovinsky4 model for this reaction. Satnoianu and Menzinger5
have extended this idea to include di†erential di†usionÈbased
on an electric Ðeld model6Èrelating the FDO mechanism to
Turing patterns, and introduced a class of patterns they call
““Ñow induced structures ÏÏ. Bamforth et al.7 have shown that
FDO structures can be predicted for the chlorine dioxideÈ
iodineÈmalonic acid (CDIMA) reaction for realistic experi-
mental conditions. In their paper, these authors also derived
general formulae for the critical conditions for the onset of
stationary patterns and also for other spatiotemporal
responses in this experimental conÐguration.

In this short paper, we apply the formulae derived by Bam-
forth et al. to the Oregonator model7 for the BZ system. In
addition to its role with regard to the BZ system, the
Oregonator has developed the status of a paradigm model for
excitable media in general.

2. Governing equations and stability analysis
The appropriate form of the governing equations for the
Oregonator model8 in a system with reaction, di†usion and
advection in the TysonÈFife9 scalings is as follows :
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(see also ref. 10). Here u and v represent the dimensionless
concentrations of the autocatalyst and the oxidised(HBrO2)form of the catalyst respectively and the parameters e, f(Mox)and q have their normal meanings in terms of the concentra-
tions of the major reactant species and reaction rate coeffi-
cients for this model. For simplicity, we assume equal
di†usion coefficients and Ñow velocity in dimensionless(/P

form) for each species. Time and distance are made dimen-
sionless with respect to the time and space scales : tref \and respectively, where is the rate(kc B)~1 xref \ (D/kc B)1@2 kccoefficient for ““process c ÏÏ and B represents the total concen-
tration of organic species, D is the molecular di†usion coeffi-
cient. The parameter e is given by where is thekc B/k5 A k5rate coefficient for the autocatalytic step in ““process bÏÏ and A
is the concentration of bromate ion. Typical values are kc \ 1
M~1 s~1 and M~1 s~1 corresponding to a system ink5\ 8
which [H`]\ 0.8 M and, from Kaern and Menzinger,3 we
adopt A\ 0.2 M and B\ 0.4 M, giving e \ 0.25.

The uniform steady state of eqn. 1(a,b) satisÐes

uss\ vss\ 12M1 [ f [ q ] [(1[ f [ q)2] 4q(1 ] f )]1@2N (2)

Following the analysis in Bamforth et al.,7 we obtain the lin-
earised equations governing the evolution of small perturb-
ations about this steady state in the form
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where and The coefficients a and bu \ uss] U v\ vss] V .
are given by
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where a and b depend only on f and q. We may then deÐne
the Jacobian matrix J in the form

J \
Aa/e
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with Tr \ (a/e) [ 1 and D\ (b [ a)/e being the trace and
determinant. The system will be ““kinetically stable ÏÏ, i.e. there
will be a stable steady state in a well-stirred batch conÐgu-
ration, if Tr \ 0 and D[ 0.

3. Stability condition

Following the analysis in ref. 7, the critical Ñow velocity /P \
for the transition from absolute to convective instability is/AC
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given by

/AC\ J2 Tr \ J2(a [ e)/e (6)

Similarly, the condition for the bifurcation to stationary pat-
terns is given by/P\ /P, cr
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Both conditions (6) and (7) require a [ e and we may note
that the condition a \ e is the Hopf bifurcation condition for
the corresponding well-stirred batch system.

The loci corresponding to conditions (6) and (7) in the /PÈe
parameter plane are shown in Fig. 1 for a system with f \ 1
and q \ 0.0008. The corresponding batch system has
a \ 0.888, and the locus for the bifurcation to stationary pat-
terns shows a vertical asymptote at e \ a. For e \ a, the two
loci divide the parameter plane into four regions. Stationary
patterns are found in the region above both loci. In the region
below both loci, the system is absolutely unstable. In the small
region to the right of the diagram, above the locus corre-
sponding to eqn. (6) but below that for eqn. (7), the system is
convectively unstable. Finally, in the region at low e and /P ,
above the locus corresponding to eqn. (7) but below that for
eqn. (6) the system shows ““ transient waves ÏÏ (see later). We
may also note that the critical Ñow velocity given by eqn. (7)
passes through zero for e \ 0.490 when
e \ 2b [ a [ [4b(b [ a)]1@2, and also that the two loci cross
at e \ 0.676 when 5e2[ 2(3a ] 2b)e ] 5a2\ 0.

Example spaceÈtime plots for parameter values from
various points on Fig. 1 are shown in Fig. 2 and 3. The dis-
tinction between absolutely unstable, convectively unstable

Fig. 1 The bifurcation loci for the transition from absolute insta-
bility (AI) to convective instability (CI) and for the transition to sta-
tionary patterns (SP) in the parameter plane : dashed curve,/PÈe /ACas given by eqn. (6) ; solid curve, as given by eqn. (7). The region/P, crlabelled TW corresponds to transient waves.

and stationary patterns is most easily demonstrated by taking
a relatively large value of e, above the value at which the two
loci cross, so we take e \ 0.8. With the system is/P \ 0.2,
absolutely unstable and a perturbation applied at the origin of
the plug Ñow section of the reactor propagates along the tube
leaving a response approaching a spatially-uniform oscillation
in time that persists for all subsequent time, Fig. 2(a). In this
grey scale plot, the lighter regions correspond to high concen-
tration of the oxidised form of the redox catalyst and the dark
indicates a reduced state. For the system is convecti-/P\ 0.8,
vely unstable, so the perturbation disturbs the system from its
initial uniform state, but at each point the system eventually
returns to its original state, Fig. 2(b)Èthis return is evident for
t [ 120 starting at x B 55.

There is, however, a boundary layer over 0\ x \ 50 in
which a stationary pattern is established by the steady state
conditions at the inÑow. At longer times, the ““horizontal ÏÏ
black and white stripes will move completely out of the
domain and a steady state is observed for x [ 50.

(The perturbation at the origin comprises the imposition of
a boundary condition corresponding to the steady state solu-
tion for this reaction model in the continuously-fed stirred
tank reactor (CSTR) which feeds the plug-Ñow reactor. In all
the computations described here, we take a dimensionless
residence time to provide the steady state condition./c \ 1.0
Further details of this approach have been given in the paper
by Bamforth et al.7 We may note that the long-time responses
observed are essentially independent of the perturbation
imposed.)

With the Ñow rate exceeds the critical value given/P \ 3.0
by eqn. (7) and a stationary pattern develops, as shown in Fig.
2(c). The wavelength adopted is equal to the product of the
Ñow rate and the oscillatory period observed in the corre-tpsponding batch system as expected from previous(tP \ 19.2),
analysis.3,7 The change in wavelength with the oscillatory
period can be seen by comparing Fig. 2(c) with Fig. 3(a), cor-
responding to e \ 0.25, a value typical of the experiments
reported by Kaern and Menzinger3 and for which tp\ 9.0.
Finally, with e \ 0.25 but at a lower Ñow rate, /P \ 0.8\

a transient wave pattern emerges, Fig. 3(b), which ini-/AC ,
tially has the appearance of phase waves propagating down
the tube (increasing x in time) but develops into waves with
negative gradient on the diagram. This is a somewhat sur-
prising observation as it implies waves travelling ““against ÏÏ
the imposed Ñuid Ñow, but is a true asymptotic feature of this
model (it was not observed in the previous computations for
the CDIMA model7). The wavelength of the TW patterns is
much longer than would be predicted simply on the basis of
the oscillatory frequency and the Ñow velocity.

The parameter e can be varied between experiments
through variation of the ratio of initial concentrations of the

Fig. 2 SpaceÈtime plots for a system with f\ 1 and e \ 0.8. (a) corresponding to region of absolute instability ; (b) corre-/P \ 0.2, /P\ 0.8,
sponding to region of convective instability ; (c) corresponding to region of stationary patterns. The dark regions correspond to the/P \ 3.0,
reduced state of the redox catalyst and light to the oxidised state.
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Fig. 3 SpaceÈtime plots for a system with f\ 1 and e \ 0.25. (a)
the wavelength here can be compared with that in Fig. 2(c)/P \ 3.0,

for the same Ñow rate ; (b) corresponding to region of tran-/P \ 0.8,
sient waves. Note that the grey scale corresponds to a di†erent range
of concentrations for the redox catalyst from that in Fig. 2, but again
dark regions correspond to the reduced state of the redox catalyst and
light to the oxidised state.

organic reducing species to those of bromate and H` ions.
The so-called ““ stoichiometric parameter ÏÏ f which indicates
the number of bromide ions produced per two oxidised metal
ions reduced can also be varied experimentally by changing
the initial concentration of bromomalonic acid in the system.
Fig. 4(a,b) shows the bifurcation loci corresponding to condi-
tions (6) and (7) in the parameter plane for two di†erent/PÈf

Fig. 4 The bifurcation loci in the parameter plane : (a) e \ 0.25,/PÈf
(b) e \ 0.8.

values of e, namely e \ 0.25 typical of the experiments of
Kaern and Menzinger, and e \ 0.8 respectively.

With e \ 0.25, there are Hopf bifurcation points for the
equivalent batch reactor system when a \ e corresponding to
f \ 0.630 and f \ 1.990. Flow distributed structures are pos-
sible only for values of f within this range under the present
conditions (equal di†usivities). Eqn. (7) indicates positive
minimum Ñow velocities for 0.630\ f \ 0.844 and for
1.262\ f \ 1.990. These loci are crossed by that for condition
(6) once on each branch. The parameter plane is thus divided
into six regionsÈone for stationary patterns, two each for
convective and absolute instability (one of each at high f and
one of each at low f ) with the system passing from absolute
through convective and then to stationary patterns as is/Pincreased at constant f, and one region of transient waves
bounded by the crossing points of the two sets of loci.

With e \ 0.8, Hopf bifurcations in the equivalent batch
reactor occur at f \ 0.924 and 1.190, so the various types of
FDO structure are found only within these limits. The loci
governed by eqn. (6) and (7) do not cross in this case, with

for all f across the above range. There are thus/P, cr[ /AConly three regions : the region of absolute instability for /\
the region of convective instability for/AC , /AC \ /P\ /P, crand the region of stable, stationary patterns for /P[ /P, cr .

4. Discussion and conclusions
The computations above indicate that the conditions for a
variety of spatiotemporal responses can be determined ana-
lytically for the Oregonator model of the BZ reaction. The
methodology followed here could be applied to any two-
variable model possessing a batch Hopf bifurcation. Fig. 1
and 4 indicate how the parameter plane can be divided into
di†erent regions for each type of response. Of particular inter-
est are the ““ stationary patterns ÏÏ representing the ““Ñow-
distributed oscillations ÏÏ. Previous theory has indicated the
existence of a minimum or critical Ñow rate for such patterns
to be stabilised. Below this critical Ñow rate, transient waves
are observed. These are not, however, the same type of tran-
sient wave reported by Kaern and Menzinger, who observed
waves which were caused by an oscillatory instability arising
in the CSTR thus giving a time-dependent inÑow or boundary
condition for the plug-Ñow reactor.

The simple relationship between the Ñow rate, the natural
oscillatory period and the wavelength seen in our previous
work on the CDIMA reaction emerges again in the above
computations. This has the beneÐt that the wavelength of the
Ñow-distributed oscillation pattern can be predicted simply by
determining the oscillatory period from the ordinary di†eren-
tial equations for the well-stirred batch system rather than
requiring solution of the partial-di†erential plug-Ñow equa-
tions. The simplicity of the Oregonator model allows us to
predict the variation of the oscillatory period on the param-
eters e and f analytically for systems close to the Hopf bifur-
cation points for which the natural oscillatory period is given
by 2p/D1@2 with D\ (b [ e)/e from the deÐnition of D given
previously and the Hopf condition a \ e. Developing the
analysis given by Leach et al.,11 for systems with f\ 1,

and so b B f \ (1 ] e)/2 at the Hopf point, givingusA q
which provides an excellent estimatetpD 2pJ2e/(1 [ e)

(within 5%) of the computed oscillatory period for all f\ 1
and e \ 0.85 for a system with q @ 1.

Since parameter e is deÐned as kcB/k5 A,

t6p \
tp

kc B
D

Je/(1 [ e)
kc B
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Jkc B/k5 A
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the period should then scale as andt6p [kc B(k5A [ kc B)]~1@2,
the FDO wavelength would then scale as fp[kc B(k5 A

where is the dimensional Ñow rate.[ kc B)]~1@2, fpExperiments are more commonly performed for composi-
tions corresponding to conditions close to the reduced steady
state, i.e. with f[ 1. Under these conditions, again developing
the analysis from Leach et al.,11 we have b B 1 and so the
natural period is expected to scale as tpD 2pJe/(1 [ e).
Again, this gives an excellent estimate of the actual period for
systems with f[ 1 and e \ 0.85 for and again theq @ 1
dimensional period and wavelength are expected to scale as

and respec-[kc B(k5A [ kc B)]~1@2 fp[kc B(k5 A[ kc B)]~1@2
tively along the Hopf curve for constant Ñow rate. Somewhat
more crudely, if (which is not always satisÐed ink5AA kc B
the experiments of Kaern and Menzinger), the period and
wavelength should scale approximately as
1/M[BrO3~][H`][Org]N1@2.

The above relationships apply only if e and f are simulta-
neously varied in an experiment so as to stay close to the
Hopf bifurcation locus. To investigate the variation of the
oscillatory period with e and f generally within the region of
oscillatory batch behaviour, the governing rate equations for
the Oregonator model have to be integrated numerically. Fig.
5 indicates the Hopf bifurcation loci for a system with
q \ 0.0008 enclosing the region of spontaneous oscillatory
behaviour in a batch system and hence the parameter range
for which FDO patterns can be observed. The variation of the
dimensionless period across this region is indicated. Fortpconstant f, the period increases monotonically with increasing
e. Experimentally this may be achieved by decreasing [H`] or

The data in selected regions of Fig. 5 can be Ðtted[BrO3~].
by a logÈlog plot which indicates that the dimensionless
period scales approximately as e1@2, which would imply that
the dimensional period and wavelength scale as

and would be independent of [Org]. ForM[BrO3~][H`]N~1@2
experiments at constant e with varying f, corresponding
approximately to varying the ratio of malonic to bromo-
malonic acid at constant [H`], and total organic[BrO3~]
species concentration, the dimensionless period is approx-
imately constant over much of the range except near the Hopf
bifurcation points.

The choice of and the applicability of the Oregonatorkcmodel for the ferroin system has been discussed else-
where.12,13 Taylor et al.14 have estimated an appropriate rate
coefficient on the basis of the decay of the spatial proÐle in the
rear of the chemical wave pulse for this system (see also

et al.15) giving M~1 s~1. This yields anUngva� rai kc \ 2.64
oscillatory period of 60.1 s, based on B\ 0.4 M, e \ 0.25 and
the estimate f\ 1. This compares as well as can be expected
with the experimentally measured period of 130 s. The scaling
with the reactant concentrations derived here can be expected

Fig. 5 The Hopf bifurcation locus in the fÈe parameter plane for the
well-stirred batch system with q \ 0.0008. The numbers indicate the
dimensionless oscillatory period computed numerically or from the
Hopf bifurcation condition.

to predict the FDO wavelengths to similar precision and the
functional dependences on the concentrations should certainly
be testable experimentally. Taylor et al.14 also note that the
consumption of the reduced form of the redox catalyst is
important in the ferroin-catalysed system (it is neglected in the
simple Oregonator form). Andresen et al.16 have performed
computations of FDO patterns using the RovinskyÈ
Zhabotinsky4 model. They found a nonlinear relationship
between the FDO wavelength and the Ñow velocity at least
for conditions close to critical Ñow rate. This is an interesting
di†erence between the two models. The RZ model is generally
a more suitable model for the ferroin-catalysed BZ system and
so an investigation of this aspect experimentally would be of
great interest.

The critical Ñow rate rises to relatively high values in the
vicinity of the Hopf bifurcation condition (a \ e for the
present model), but decreases away from such points. To a
reasonable level of approximation, we may conclude that a
typical value for the critical Ñow rate for Oregonator-based
systems is This can be converted to a dimensional/P, cr B 2.
value using the scalings described earlier,fp fp \

cm taking M s~1,(DkcB)1@2/PB (0.005 s~1)/P kc \ 2.64
B\ 0.4 M and D\ 2 ] 10~5 cm2 s~1. Thus an estimate of
the critical Ñow velocity is cm s~1.fp, cr \ 0.01

Taking the experimental conÐguration of Kaern and Men-
zinger,3 comprising a tube of 10 mm inner diameter and
assuming 33% free volume (the volume of the tube not
occupied by the beads used to ensure plug Ñow), such that the
free volume per unit length of the tube is 0.26 mL cm~1, then
this translates to a critical volumetric Ñow rate of ca. 0.14 mL
min~1.

Such Ñows are difficult to maintain in practice, suggesting
that the existence of a minimum Ñow would be difficult to
demonstrate experimentally except for systems close to the
batch Hopf condition : Kaern and Menzinger do not report
any experimental observation of the critical Ñow rate.
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